Team 8 AUVSI

DESIGN COMPETITION

Sponsor. Dr. Shih, FIPSE

Advisor. Dr. Frank, Dr. Alvi

Instructor. Dr. Gupta

Students: David Hegg, Christopher Bergljung, Jermaine Dickey, William Di Scipio, Gavarni Leonce, John Murnane, Tavarius Slaughter

Group Number: 8 Slide 1 of 20

Agenda

- Project & Design Competition Overview
- Design and Material Selection
- Progress
- Stabilization and Flight Test
- Budget
- Schedule
- Final Summary

Group Number: 8 Slide 2 of 20

Project Overview

"The goal of this project is to work effectively as an international team to create the best possible aircraft for future success at the 2016 AUVSI SUAS Competition."

FIPSE- Fund for the Improvement of Postsecondary Education

• Gained knowledge of international cooperations

Tasks:

- **Design** aircraft, optimizing for competition
- Build and modify existing Senior Telemaster plane
- Program aircraft for automated VTOL and waypoint navigation
- Test aircraft and adjust accordingly

Group Number: 8 Slide 3 of 20

AUVSI 2015 Competition

• Competition overveiw:

- Student Unmanned Aerial System (SUAS) Competition
- 2015 AUVSI rules used as reference for future design
- Primary objectives:
 - Achieve autonomous flight
 - Image recognition capabilities
- Secondary objectives:
 - Off axis imaging
 - Object detection/avoidance
 - Vertical Takeoff and Landing



Tavarius Slaughter Interim Design Review

Group Number: 8 Slide 4 of 20

Design Selection

Speed, Agility, and Endurance will be major factors for success

Design Selection

- Chose to design hybrid vehicle
 - Vertical Takeoff and Landing(VTOL)
 - Decreased space for takeoff and landing
 - Hovering Capabilities
- Innovative design
 - Allows team to separate itself from other competitors

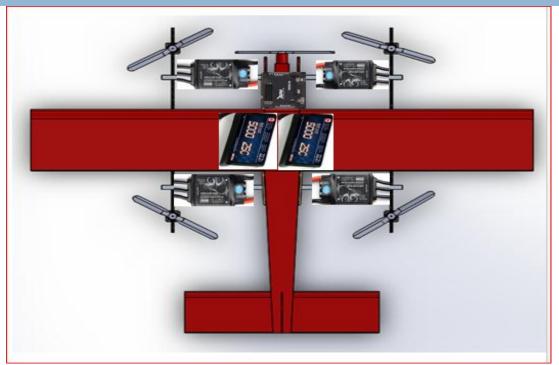
Group Number: 8 Slide 6 of 20

Mechanical Design

Material Selection:

- 1⁄4" Plywood for the Base
- Quick-Recovery Polyurethane Foam
- 1" Aluminum 6061 square tubes
- ½" High-Strength Rigid Carbon Fiber Rods
- G-10 Garolite Motor Mounts
- Industrial Strength Velcro

Group Number: 8 Slide 7 of 20


Electrical Design

Electrical Design Selections:

- 4 cobra 60 Amps opto multirotor ESCs
- APM 2.6 autopilot system
- 4 Cobra 4510 420KV Brushless Motors
- 4 APC 18"x5" props (2 CCW and 2 CW)
- Futaba 6 channel receiver
- 2 Venom Flight Pack batteries

All navigation and controls will be done in the Mission Planner software

Group Number: 8 Slide 8 of 20

Exploded Views

Group Number: 8 Slide 9 of 20

Exploded Views

Group Number: 8 Slide 10 of 20

Build Progress

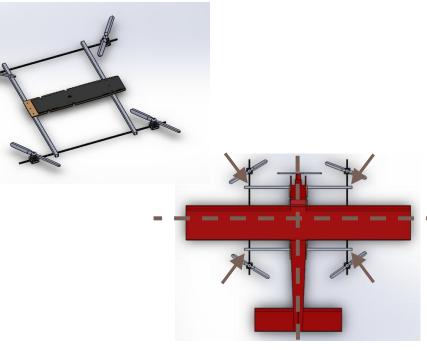
Group Number: 8 Slide 11 of 20

Build Progress

Progress Made:

- Completed the machining process of all the parts (Rods, Wood frame, mounts)
- 2. Attached motor mounts to carbon fiber rods using epoxy
- 3. Attached wood base to aluminum rods
- 4. Created wring harness to connect power supply
- 5. Completed initial build (see plane)

Group Number: 8 Slide 12 of 20

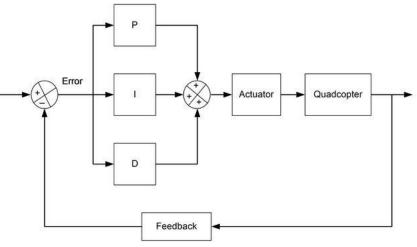

Future Work:

- 1. Need to receive new APM and new screws for mounts
- 2. Finish wiring of the electrical system
- 3. Permanent attachment of carbon fiber rods to aluminum
- 4. Order 3DR Telemetry Kit
- 5. Finalized build
- 6. Flight Testing

Stabilization Testing

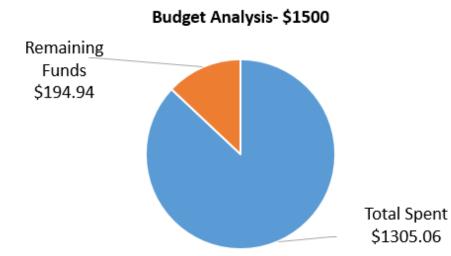
- Discontinued testing of Dr. Shih's quadcopter
- Plane will be tethered dependent on:
 - Roll: along the vertical axis
 - Pitch: along the horizontal axis
 - Lastly, at each of the four corners
- Quadcopter frame will be tested on its own
 - Attach equivalent plane weight
- Fully assembled plane will be tested
 - Analyze the effects of asymmetrical body

Group Number: 8 Slide 13 of 20


John Murnane Interim Design Review

PID Tuning for Stabilization

Goal: To use the existing Adrupilot PID stability control for our aircraft


- Software allows users to change PID configuration values to adjust performance
- Roll, Pitch, and Yaw: 3 degrees of freedom
- Goal of PID tuning is to find the balance between moment of inertia and force from motors
- Proportional (P), Integral (I), Derivative (D)
 - Plane will be connected to tether.
 - P gain coefficient
 - Main stability parameter- sensitivity to angular change
 - Second, I gain coefficient
 - Smooths out flying- useful for irregularities
 - Third, D gain coefficient
 - Softens or dampens movement of plane-"accelerator parameter"

Group Number: 8 Slide 14 of 20

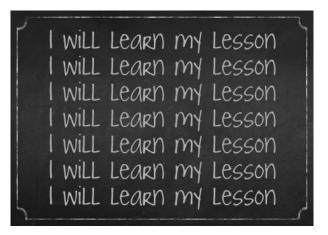
John Murnane Interim Design Review

Cost Analysis

Analysis:

- 1. Remaining funds = \$194.94
- 2. Efficient Spending
- 3. Surplus Added
- 4. Need to purchase 3DR Telemetry kit (\$100)

Group Number: 8 Slide 15 of 20

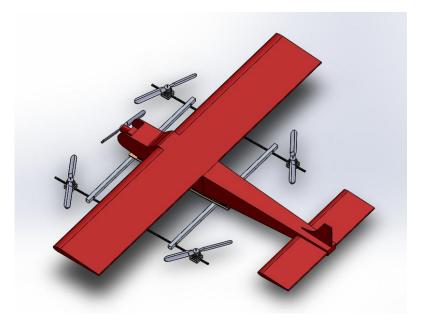

Schedule/Gantt Chart

				015 March 2015 April 2015	Ma
ask Name 👻	Duration 👻	Start 👻	Finish 🚽 👻	8 11 14 17 20 23 26 1 4 7 10 13 16 19 22 25 28 31 3 6 9 12 15 18 21 24 27	30
Spring Semester 2015	17 wks	Mon 1/5/15	Fri 5/1/15		
Machine Parts for Design	8 wks	Mon 1/5/15	Fri 2/27/15		
Receive parts for design	2 wks	Mon 1/5/15	Fri 1/16/15		
Complete drawings for design	1 wk	Mon 1/19/15	Fri 1/23/15		
Submit parts to be machined and have them machined	5 wks	Mon 1/26/15	Fri 2/27/15		
▲ VTOL Test	9 wks	Mon 3/2/15	Fri 5/1/15		
Build Frame and Attach Motors	3 wks	Mon 3/2/15	Fri 3/20/15		
Wire all electrical components	3 wks	Mon 3/2/15	Fri 3/20/15		
Build tether system for safety	3 wks	Mon 3/2/15	Fri 3/20/15		
Proceed with Test Plans for VTOL and Stability	1.6 wks	Mon 3/23/15	Wed 4/1/15		
Touble Shoot	1 wk	Mon 4/13/15	Fri 4/17/15		
Supplemental Test for VTOL/Stability	3 wks	Mon 4/13/15	Fri 5/1/15		
Assessment and Future Plans	1 wk	Mon 4/27/15	Fri 5/1/15		

Group Number: 8 Slide 16 of 20

Lessons Learned

- Previous year parts must be double check
- Use resources better (professors and facilities)
- More accountability
- Detailed Planning


Gavarni Leonce Interim Design Review

Group Number: 8 Slide 17 of 20

Final Summary

- Design (Pro's/Con's)
 - Optimal for AUVSI competition
 - Requires innovative approach
 - Gives 2016 team the Advantage
- Building process
 - All parts have been machined
 - Frames major parts assembled
 - Waiting for 3DR and Ardupilot
- Flight Test Plans
 - APM Planner being used
 - Testing apparatus
- Budget/Schedule

Group Number: 8 Slide 18 of 20

References

- 1. http://www.arcturus-uav.com/aircraft_jump.html
- 2. http://mcmaster.com
- 3. <u>http://theepoxysource.com</u>
- 4. <u>http://www.cobramotorsusa.com/motors/cm-4510-28-side-l.jpg</u>
- 5. http://flyduino.net/T-Motor-MN4010-475KV
- 6. <u>http://www.foxtechfpv.com/5008340kv-brushless-motorblack-p-1149.html</u>
- 7. <u>http://www.apcprop.com/ProductDetails.asp?ProductCode=LP18055MR</u>
- 8. <u>http://innov8tivedesigns.com/cobra-60a-opto-multirotor-esc</u>
- 9. https://store.3drobotics.com/products/apm-2-5-kit

10. https://yanflychannel.wordpress.com/articles/design-for-delivery-and-focus/

Group Number: 8 Slide 19 of 20

