### **AUVSI DESIGN COMPETITION**

Sponsor. Dr. Shih, FIPSE

Advisor. Dr. Frank, Dr. Alvi

Instructor. Dr. Gupta, Dr. Helzer

Students: David Hegg, Christopher Bergljung, Jermaine Dickey, William DiScipio, Gavarni Leonce,

John Murnane, Tavarius Slaughter

### Overview



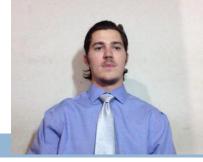
"The goal of this project is work effectively as an international team to create the best possible aircraft for future success at the 2015 AUVSI SUAS Competition."

FIPSE- Fund for the Improvement of Postsecondary Education

Two members of Team 8 are currently studying in Itajuba, Brazil

International experience

· Communication and teamwork skills


#### Tasks:

- **Design** aircraft, optimizing for competition
- Build and modify existing Senior Telemaster plane
- Program aircraft for automated VTOL and navigation
- Test aircraft and adjust accordingly



Group Number: 8 Slide 2 of 20

# Progress

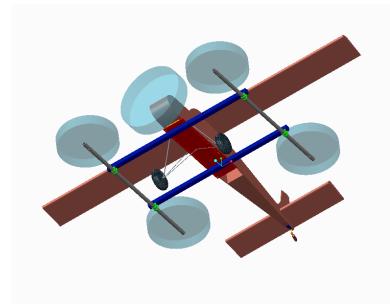


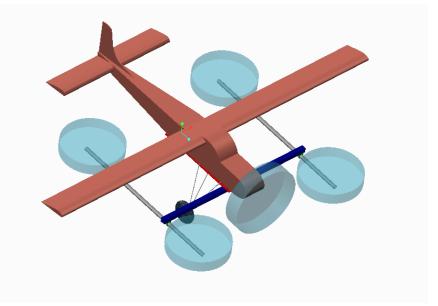

Team 8 has been working diligently to design the most effective aircraft design for the senior design project.



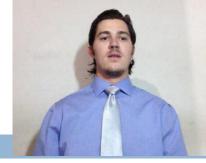
#### **Decision Matrix:**

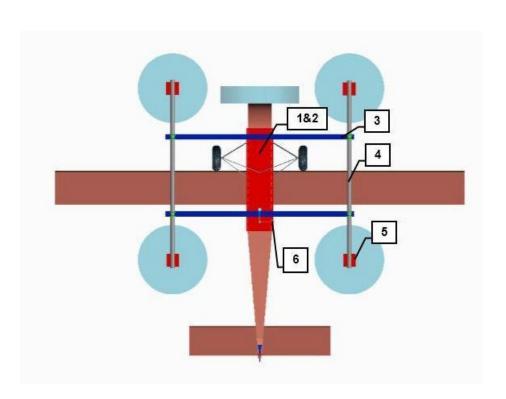
- 1. Retrofit Last Year's Plane
  - Cost and Time effective
  - Long flight duration and High Payload
- 2. Build a Multi-Rotor
  - Great Opportunity to Learn
  - VTOL
  - Foundation for Future


Decided a *Hybrid Aircraft* would combine the best features of both designs.




#### Constraints:


- Lightweight
- Strong
- Low Cost


- Simple
- Removable
- Vibration damping





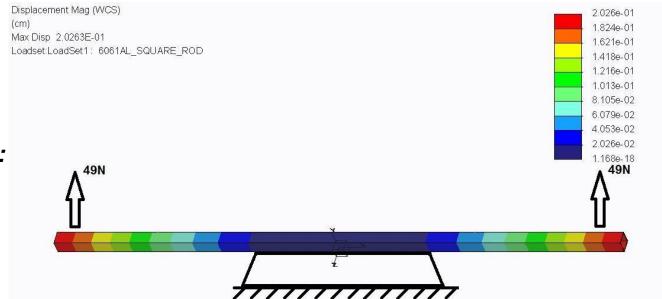
Group Number: 8 Slide 4 of 20





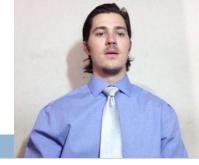
#### Material Selection:

- 1. G-10 Garolite Base
- Quick-Recovery Polyurethane Foam Spacer
- 3. 6061 Aluminum Cross Beams
- High-Strength Rigid Carbon Fiber booms
- 5. G-10 Garolite Motor Mount Adapters
- 6. Industrial Strength Velcro




#### Beam Displacement:

Force of lift on both ends of the beam:


4.45kg for each motor ≈ 5kg = 49N

Forces are applied 5cm from each end, with the width of the body fixed (15cm)



Max Displacement: 0.2026cm

Group Number: 8 Slide 6 of 20 John Murnane Midterm Presentation 2



| Frame Design: Weight and Cost Analysis |                                                                             |                                |               |                   |                  |         |                                      |                  |             |          |                             |
|----------------------------------------|-----------------------------------------------------------------------------|--------------------------------|---------------|-------------------|------------------|---------|--------------------------------------|------------------|-------------|----------|-----------------------------|
| Component                              | Description                                                                 | Dimensions                     | Volume (in^3) | Density (lb/in^3) | Weight/Part (lb) | Price   | Vendor                               | Qty.             | Weight (lb) | Subtotal | Extras                      |
|                                        | Base<br>Excellent Tensile and Impact Strength                               | 23x6.1x.1575                   | 22.097        | 0.063             | 1.392            | \$0.00  | n/a                                  | 1                | 1.392       | \$0.00   |                             |
| G10                                    | Motor Mount Adapter                                                         | 2.36 x 2.36 x<br>.1575"        | 0.879         | 0.063             | 0.055            | \$0.00  | n/a                                  | 4                | 0.221       | \$0.00   |                             |
|                                        | Parallel Arms for holding the motors<br>Excellent Tensile Strength          | 0.50Dx0.414<br>ID x 43.3"      | 10.690        | 0.067             | 0.716            | \$35.87 | McMaster-Carr<br>Part #:2153T41      | 2                | 1.432       | \$71.74  | \$35.87                     |
|                                        | Square Tubes Cross Bar<br>Good/good : Tensile/Impact                        | 1 x 1 x 43.3"<br>0.0625" thick | 10.150        | 0.1               | 1.015            | \$23.38 | McMaster-Carr<br>Part #:6546K53 6ft. | 2                | 2.030       | \$46.76  | \$23.38                     |
|                                        | Padding to Protect Plane and<br>Decrease Vibration                          | 24 x 24 x .25"                 | 35.075        | 0.012             | 0.406            | \$34.03 | McMaster-Carr<br>Part #:86375K252    | 1                | 0.406       | \$34.03  |                             |
|                                        | Double/Bubbe Orange Epoxy, 10 Pack<br>High Peel Stgth.                      | n/a                            | n/a           | n/a               | 0.000            | \$16.00 | theepoxysource.com                   | 1                | 0.000       | \$16.00  |                             |
|                                        | Industrial Strength Double Sided<br>Velcro to Attach the Frame to the Plane | n/a                            | n/a           | n/a               | 0.250            | \$20.00 | n/a                                  | 1                | 0.250       | \$20.00  |                             |
| Zip Ties                               | Zip ties to Secure the Carbon Fiber<br>Tubes to the Cross Bars              | n/a                            | n/a           | n/a               | 0.000            | \$10.00 | n/a                                  | 1                | 0.000       | \$10.00  |                             |
| Hardware                               | Screws, Bolts, Etc.                                                         | n/a                            | n/a           | n/a               | 0.000            | \$20.00 | n/a                                  | 1                | 0.000       |          |                             |
|                                        |                                                                             |                                |               |                   |                  |         | Sı                                   | ibtotal<br>Total |             |          | \$58.87<br><b>\$277.4</b> 0 |

Group Number: 8 Slide 7 of 20

### Motor Selection



| Equipment weight |                |              |             |            |       |  |       |
|------------------|----------------|--------------|-------------|------------|-------|--|-------|
| Frame            | Battery<br>(2) | Motor<br>(4) | Prop<br>(4) | ESC<br>(4) | Misc. |  | kg    |
| 8.283            | 1.080          | 0.844        | 0.204       | 0.216      | 0.300 |  | 10.92 |


- Calculated weight 10.92kg
- Safety Factor: 1.5
- Total Thrust Needed: 16.38kg

Calculated Weight \* Safety Factor = Total
Thrust Needed

Thrust per motor:4.10kg

Group Number: 8 Slide 8 of 20

## **Motor Selection**





Cobra 4510 Multi-Rotor Motor



Tiger Motor MN4120



Tarrot 5008 Motor

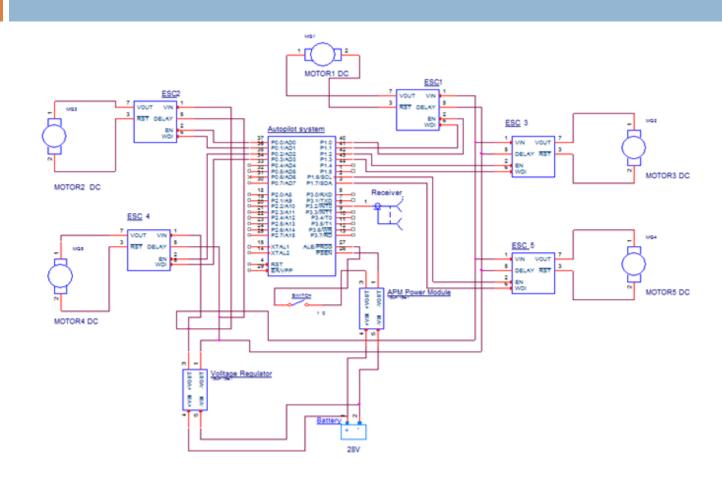
| Motor  | Cobra   | T-Motor  | Tarrot  |  |  |
|--------|---------|----------|---------|--|--|
| Thrust | 4468 g  | 4280 g   | 4100 g  |  |  |
| Price  | \$74.99 | \$129.90 | \$59.90 |  |  |
| Weight | 211g    | 253g     | 168g    |  |  |

Group Number: 8 Slide 9 of 20 Chris Bergljung Midterm Presentation 2

### Motor Selection






Cobra 4510, KV = 420, Current 35A, Weight 211g

APC 18 x 5.5" Multi-Rotor Propeller

| Prop<br>Size | Li-Po<br>Cells | Input<br>Voltage | Motor<br>Amps | Input<br>Watts | Prop<br>RPM | Pitch<br>Speed<br>in MPH | Thrust<br>Grams | Thrust Eff.<br>Ounces | Thrust Eff.<br>Grams/W |
|--------------|----------------|------------------|---------------|----------------|-------------|--------------------------|-----------------|-----------------------|------------------------|
| 18x5.5-MR    | 6              | 22.2             | 38.76         | 860.5          | 6,414       | 33.4                     | 4468            | 157.60                | 5.19                   |

**Group Number: 8** Slide 10 of 20

### Circuit schematic



## **Autopilot Selection**

#### Autopilot selection:

Ardupilot 2.5

#### System Features:

- Fully autonomous waypoint navigation for multi-rotor vehicle
- Failsafe programming options if device loses signal
- Relay real-time telemetry data to ground system



### **ESC** Selection

#### ESC Selection for Quad-Rotor:

Cobra 60A opto multirotor ESC

#### Design features :

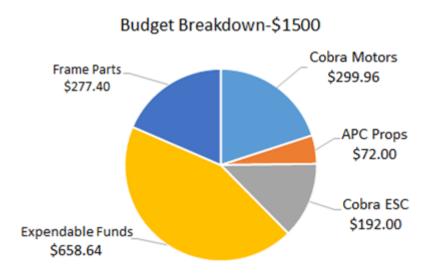
- Permits device to operate with minimal radio interference at high currents
- If the autopilot system loses signal, the system will automatically switch to idle



### **Electrical Power Calculations**

#### Remaining battery capacity if aircraft land and takeoff for 40s

- = (battery capacity (discharge time \* current drawn)
- = (10A (.0111hours \* 155.04A)) = 8.28 A

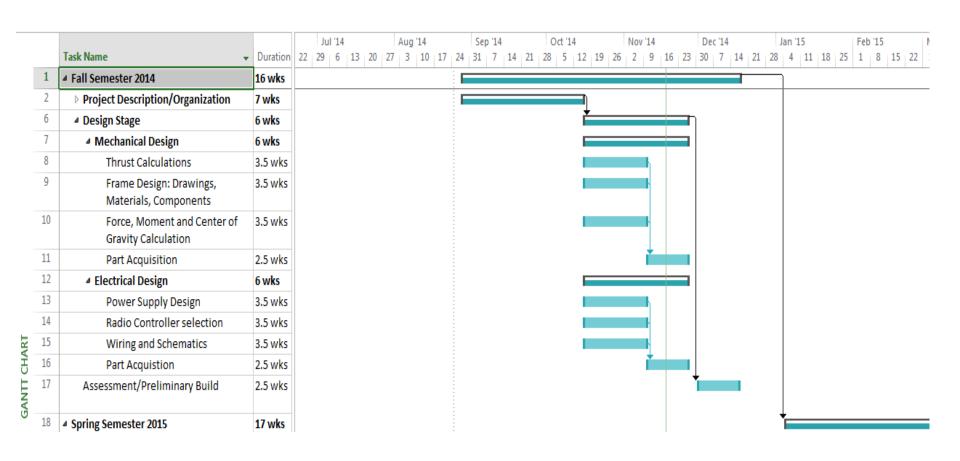

#### Hover time = (battery capacity )/(current drawn)

= (8.28 A / 96)\*60 min = 5.175 min

Total flight time = 5.175 min + .66 min = 5.84 min

Recommended flight time = **4.6733 min** 

# Cost Analysis




#### Analysis:

- 1. Utilized 56% (\$841.36) of budget
- 2. Efficient Spending
- 3. Surplus Added

Group Number: 8 Slide 15 of 20

### Schedule/Gantt Chart



Group Number: 8 Slide 16 of 20

### Future Work

#### Fall Semester:

- 1. Part Aquisition
- 2. Frame Drawings



#### **Spring Semester:**

- 1. Manufacturing/Preliminary Build
- 2. Test Flight/Troubleshoot (Horizontal)
- 3. Finalized Build
- 4. Test Flight/Troubleshoot (Vertical)

# Final Summary

- 1. Improved multidisciplinary and international communication skills
- 2. Selection of hybrid design
- 3. Frame design and material selection
- 4. Motor, Prop, and ESC selection
- 5. Electrical Components/Power Design
- 6. Budget/Schedule

### References

- 1. <a href="http://www.arcturus-uav.com/aircraft\_jump.html">http://www.arcturus-uav.com/aircraft\_jump.html</a>
- 2. <a href="http://mcmaster.com">http://mcmaster.com</a>
- 3. <a href="http://theepoxysource.com">http://theepoxysource.com</a>
- 4. <a href="http://www.cobramotorsusa.com/motors/cm-4510-28-side-l.jpg">http://www.cobramotorsusa.com/motors/cm-4510-28-side-l.jpg</a>
- 5. <a href="http://flyduino.net/T-Motor-MN4010-475KV">http://flyduino.net/T-Motor-MN4010-475KV</a>
- 6. <a href="http://www.foxtechfpv.com/5008340kv-brushless-motorblack-p-1149.html">http://www.foxtechfpv.com/5008340kv-brushless-motorblack-p-1149.html</a>
- 7. <a href="http://www.apcprop.com/ProductDetails.asp?ProductCode=LP18055MR">http://www.apcprop.com/ProductDetails.asp?ProductCode=LP18055MR</a>
- 8. <a href="http://innov8tivedesigns.com/cobra-60a-opto-multirotor-esc">http://innov8tivedesigns.com/cobra-60a-opto-multirotor-esc</a>
- 9. <a href="https://store.3drobotics.com/products/apm-2-5-kit">https://store.3drobotics.com/products/apm-2-5-kit</a>
- 10. <a href="https://yanflychannel.wordpress.com/articles/design-for-delivery-and-focus/">https://yanflychannel.wordpress.com/articles/design-for-delivery-and-focus/</a>

4 STATE OF THE PERSON NAMED IN The state of the s