AUVSI DESIGN COMPETITION

Sponsor. Dr. Shih Advisor. Dr. Frank Instructor. Dr. Gupta, Dr. Helzer Students: David Hegg, Christopher Bergljung, Jermaine Dickey, William Di Scipio, Gavarni Leonce, John Murnane, Tavarius Slaughter

Group Number: 8

Tavarius Slaughter

Slide 1 of 15

Competition Overview

"The goal of this project is to design and build a fully autonomous aerial vehicle to compete in the AUVSI competition in the summer of 2015."

AUVSI- Association of Unmanned Aerial Vehicle System International

- Host an Annual competition for Unmanned Aerial Vehicles
- Stimulate interest in Drones

Competition is broken into separate parts:

- Two Primary Objectives (60%)
- Nine Secondary Objectives (40%)

Tavarius Slaughter

Mid Term Presentation 1

Group Number: 8

Slide 2 of 15

Design Options - Fixed Wing

Design Option Includes: 1. Retrofit last year's model

Benefits for competition:

- Longer flight duration
- Greater velocity
- Increased payload

Tavarius Slaughter

Mid Term Presentation 1

Group Number: 8

Slide 3 of 15

Design Options - Multi-Rotor

Design Options Include:

- 1. Build multi-rotor vehicle
- 2. Purchase a pre-built quad copter

Benefits for Competition:

- Agile
- Hovering Ability
- Take off and landing

Tavarius Slaughter

Mid Term Presentation 1

Group Number: 8

Slide 4 of 15

Results of Design Options

		Retrofit	Build Mulit-	Buy Multi-	
Component	Importance	Fixed	Rotor	Rotor	
Cost	10	9	5	3	
Build Time	10	9	3	6	
Weight	4	6	5	5	
Duribility	4	4	7	7	
Troubleshooting	7	3	6	6	
Tech. Development Fondation for	10	6	10	5	
Future	5	3	7	7	
Stability	3	5	8	8	
Payload	5	8	5	5	
Flight Duration	8	7	5	5	
Velocity	6	7	5	5	
Automation Feasibility	8	8	7	7	
Airdrop	4	5	8	8	
Agility	4	5	8	8	
	Total Score	566	521	481	

Group Number: 8

- Design matrix assisted in the decision making
- A multi-rotor aircraft will be used based on:
 - 1. Performance benefits
 - 2. Technical Development
 - 3. Foundation for the future

Tavarius Slaughter

Mid Term Presentation 1

Slide 5 of 15

Secondary Objectives

Secondary Objectives	Importance	Cost	Difficulty	Time	Total
Autonomous Target Localizion	8	8	6	8	176
Actionable Intelligence	4	4	3	3	40
EO/IR Target Detection	4	1	3	3	28
Off-axis Target Detection	4	8	8	7	92
Emergent Target Detection	4	8	8	7	92
Radio Freq. Upload/Download	4	2	3	4	36
Air Drop	2	6	8	7	42
Network Interoperability	2	5	2	3	20
Sense, Detect, and Avoid Tasks	4	5	2	3	40

Group Number: 8

Jermaine Dickey

Slide 6 of 15

Ideal Prototype

- Lightweight and aerodynamic to increase efficiency
- Flight Control
- Static and Dynamically Stable
- Cost effective
- Meets Competition Requirements
 Weight
 - •Temperature
 - •Altitude

Jermaine Dickey

Mid Term Presentation 1

Group Number: 8

Slide 7 of 15

Quadcopter Design

- 1. Quadcopter
 - Fewer motors to control
 - More power output to individual motor
 - Easy to fly
 - Light weight
 - Cost efficient
- 2. Custom Quadcopter
 - Easily reproduced
 - Customizable to needs

Group Number: 8

Mid Term Presentation 1

Slide 8 of 15

Hexacopter Design

1. Hexacopter

- More stability but higher power consumption
- Can support larger payload
 than quad-copter
- Higher resistance to wind
- Less strain applied to each motor
- 2. Custom Hexacopter
 - Easier to modify to our needs
 - Made to be easily reproduced

Group Number: 8

Jermaine Dickey

Mid Term Presentation 1

Slide 9 of 15

Constraints and Contingency Plan

Constraints

- 1. Physical
 - Weight
 - Power consumption
 - Flight Time
- 2. Real World
 - Time
 - Budget

Contingency Plan

- 1. Last team's fixed wing plane
 - Communication, character recognition, airdrop, and navigation systems similar
 - Autonomous flight control will be different

Group Number: 8

Slide 10 of 15

Will Di Scipio

Schedule/Gantt Chart

Group Number: 8

Will Di Scipio

Slide 11 of 15

Future Work

Mechanical:

- Thrust Calculations
- Design of vehicle
- Parts acquisition
- Fabrication

Group Number: 8

Electrical:

- Electrical power calculations
- Autopilot selection/programming
- Microcontroller selection/programming
- Character recognition programming

Will Di Scipio

Slide 12 of 15

Final Summary

- 1. Decided on multi-rotor design
- 2. Calculations needed to complete design
- 3. Begin acquiring parts
- 4. Meet all deadlines for competition
- 5. Defined a contingency plan

Group Number: 8

Will Di Scipio

Slide 13 of 15

References

- 1. <u>http://www.coptercraft.com/multirotor-frame-configurations/</u>
- 2. <u>http://www.auvsi-seafarer.org/media/pdf/2015 AUVSI SUAS Rules Rev 0.9 DRAFT (14-0922-1).pdf</u>
- 3. <u>http://engineeringschools.com/resources/an-interview-with-craig-janus-</u> <u>electrical-engineer</u>
- 4. <u>http://www.britannica.com/EBchecked/topic/371845/mechanical-</u> engineering
- 5. <u>http://www.cadproe.com/</u>
- 6. <u>http://samluce.com/2014/09/answer-kids-direct-questions-direct-answers/</u>
- 7. <u>http://aeroquad.com/content.php</u>

Group Number: 8

Will Di Scipio

Slide 14 of 15

