AUVSI DESIGN COMPETITION

Sponsor.Dr. Shih, FIPSEAdvisor.Dr. Frank, Dr. AlviInstructor.Dr. Gupta, Dr. HelzerStudents:David Hegg, Christopher Bergljung,Jermaine Dickey, William Di Scipio, Gavarni Leonce,John Murnane, Tavarius Slaughter

Group Number: 8

Will Di Scipio

Spring Update Presentation

Slide 2 of 18

Overview

"The goal of this project is work effectively as a team to create the best possible aircraft for future success at the 2016 AUVSI SUAS Competition."

FIPSE- Fund for the Improvement of Postsecondary Education

- Two members of Team 8 studied in Itajuba, Brazil during Fall 2014
- International experience
- Communication and teamwork skills

Tasks:

- **Design** aircraft and optimize for competition
- Build and modify existing Senior Telemaster plane
- Program aircraft for stable VTOL
- Test aircraft and improve functions

Group Number: 8

Will Di Scipio

Slide 2 of 18

Progress

Progress:

- Calculations complete and vehicle specifications determined
- Final design chosen
- Parts selected and ordered
- Entering building phase

Group Number: 8

Will Di Scipio

Slide 3 of 18

Motor Selection

- **Motor**: 4 Cobra 4510
 - Specifications: KV = 420 RPM, Motor I=38.76A, Input V = 22.2
- **Propeller**: 4 APC
 - Specifications: Diameter = 18 in, Pitch = 5.5 in
- Effective thrust: 6.62 kg per motor/propeller combination
- Total effective thrust: 26.48 kg
- Greater than 2:1 thrust to weight ratio (total weight 10.92 kg)

Group Number: 8

Will Di Scipio

Slide 4 of 18

Circuit schematic

Group Number: 8

Gavarni Leonce

Slide 5 of 18

Autopilot and ESC Selection

Autopilot selection:

- Ardupilot 2.5
- Fully autonomous waypoint Navigation for multi-rotor vehicle
- Failsafe programming options if device loses signal
- Relay real-time telemetry data to ground system

ESC selection:

- Cobra 60A Opto multirotor ESC
- Permits device to operate with minimal radio interference at high currents
- If the autopilot system loses signal, the system will automatically switch to idle

Gavarni Leonce

Group Number: 8

Slide 6 of 18

Electrical Power Calculations

Remaining battery capacity if aircraft land and takeoff for 40s

= (battery capacity – (discharge time * current drawn)

Potential hovering time = (battery capacity *60min)/(current drawn)

Max total flight time = Takeoff time + potential hovering time

Recommended flight time = 0.8^{*}Max flight time

Initial battery capacity	Remaining battery capacity from VTOL of 40s	Potential hovering time	Max total flight time	Recommended flight time
10AH	8.28AH	5.175 min	5.84 min	4.6733 min

Group Number: 8

Gavarni Leonce

Slide 7 of 18

Frame Design

Design Criteria:

- Light Weight
- Aerodynamic

Material Selection:

- 1. G-10 Garolite for the Base
- 2. Quick-Recovery Polyurethane Foam as a Spacer between the frame and plane
- 3. 6061 Aluminum Cross Beams for Carbon Fiber Attachment
- 4. High-Strength Rigid Carbon Fiber rods to serve as motor mount supports
- 5. G-10 Garolite cut to be Motor Mounts
- 6. Industrial Strength Velcro to fasten the base to the plane

Jermaine Dickey

Spring Update Presentation

Group Number: 8

Slide 8 of 18

Frame Design Weight and Cost

Component	Description	Weight (lb)	Price	Qty.	Total Weight (kg)	Subtotal
G10	Base	1.392	\$0.00	1	0.631	\$0.00
G10	Motor Mount	0.055	\$0.00	4	0.096	\$0.00
Carbon Fiber	Parallel Arms that Support Motors	0.716	\$35.87	2	0.650	\$71.74
6061 AI	Attaches Carbon rods to Base	1.015	\$23.38	2	0.921	\$46.76
Foam Spacer	Padding to Plane	0.406	\$34.03	1	0.184	\$34.03
D.B. Orange	Epoxy to Attach Motor Mounts	0.000	\$16.00	1	0.028	\$16.00
Velcro	Holds Base to Plane	0.250	\$20.00	1	0.028	\$20.00
Zip Ties	Secures Carbon Fiber to Al6061	0.000	\$10.00	1	0.028	\$10.00
Hardware	Screws, Bolts, Etc.	0.000	\$20.00	1	0.028	\$20.00
				Total	2.595kg	\$218.53

Group Number: 8

Jermaine Dickey

Slide 9 of 18

Preliminary Stability Testing

Sensor:

- Proof of Concept
 - SW-200D
 - Roll Ball Switch

Positives

 Able to detect values other than "full on" or "full off

• Negatives

 Severely Affected by vibrations

Group Number: 8

Jermaine Dickey

Slide 10 of 18

Preliminary Testing Video

Leveling Components:

- Sensor
 - SW-200D
- Micro-Controller
 Arduino Uno
- ESC
 - FMS 12A

• Motor

• Mini Brushless

Group Number: 8

Jermaine Dickey

Slide 11 of 18

Future Testing

Desired:

- HMC1512
 - Dual Hall Effect Sensor
 - Detects Angular
 Displacement
 - VA= Vs*S*sin(2 Θ)
 - VB= Vs*S*cos(2⊖)
- LPR410AL
 - Dual Axis Gyroscope for angular rate measurements

Schematic of the 2axes that are measured for rate of rotation

HMS1512 Detecting

magnetic angular

displacement

Jermaine Dickey

Spring Update Presentation

Group Number: 8

Slide 12 of 18

Cost Analysis and Procurement

Procurement:

- All frame parts in possession
- All additional parts ordered

Cost Analysis:

- 1. Utilized 56% (\$841.36) of budget
- 2. Efficient Spending
- 3. Surplus Added

Group Number: 8

John Murnane

Slide 13 of 18

Schedule for Spring 2015

		Dec '1	4	Ja	n '15		F	Feb '15	5		Mar	15		A	pr '15			May '1	15
Task Name	Duration	30 7	14 21	28	4 11	1 18	25	1 8	15	22	1	8 15	22	29	5	12 19	26	3	10 17
Spring Semester 2015	17 wks			Ĭ															
Build Design	4 wks			1															
Complete design build	2 wks			1		h													
Drawings of assembled design	1 wk					1													
Troubleshoot and order supplementary parts	1 wk																		
Forward Flight Test	3 wks							Ť											
Test forward flight	1 wk								h										
Troubleshoot	1 wk								-										
Supplemental test if necessary	1 wk																		
VTOL Test	9 wks									1									
Mount Motor/Rotors to Frame	2 wks											Ъ							
Test VTOL/Stability	3 wks											Ť			1				
Touble Shoot	2 wks														1				
Supplemental Test for VTOL/Stability	3 wks																		
Assessment and Future Plans	1 wk																		

Group Number: 8

Slide 14 of 18

John Murnane

Future Work

Spring Semester:

- 1. Machining and Preliminary Build
- 2. Forward flight testing
- 3. Troubleshooting
- 4. Vertical flight testing
- 5. Troubleshooting

Future Semesters:

- 1. Research on transitional flight
- 2. Selection of secondary tasks
- 3. Optimization

Group Number: 8

Task Name 👻	Duration				
▲ Fall Semester 2015	17 wks				
Transitional Flight	14 wks				
Research Transitional Flight Options	3 wks				
Implement the best option for transitional flight	6 wks				
Test Transitional Flight	3 wks				
Troubleshoot and supplemental test	2 wks				
Competition Secondary Task	3 wks				
Research and select secondary task	1 wk				
Designs for secondary Task	2 wks				
Spring Semester 2016	17 wks				
Autopilot	8 wks				
Optimize autopilot code	5 wks				
Test Autonomous Flight	2 wks				
Troubleshoot Autonomous Flight	1 wk				
Secondary Task	7 wks				
Build/Code Secondary Objectives	3 wks				
Test Secondary objectives	2 wks				
Troubleshoot/optimize design	2 wks				

John Murnane

Spring Update Presentation

Slide 15 of 18

Final Summary

- FIPSE sponsored team working on aircraft based on AUVSI specifications
- 2. Aircraft design completed; motor/propellers, electrical components, and physical frame selected
- 3. Beginning build phase
- 4. All parts ordered and in the process of shipping
- 5. Future work includes extensive testing and troubleshooting

Group Number: 8

John Murnane

Slide 16 of 18

References

- 1. http://www.arcturus-uav.com/aircraft_jump.html
- 2. http://mcmaster.com
- 3. http://theepoxysource.com
- 4. <u>http://www.cobramotorsusa.com/motors/cm-4510-28-side-l.jpg</u>
- 5. http://flyduino.net/T-Motor-MN4010-475KV
- 6. <u>http://www.foxtechfpv.com/5008340kv-brushless-motorblack-p-1149.html</u>
- 7. <u>http://www.apcprop.com/ProductDetails.asp?ProductCode=LP18055MR</u>
- 8. <u>http://innov8tivedesigns.com/cobra-60a-opto-multirotor-esc</u>
- 9. <u>https://store.3drobotics.com/products/apm-2-5-kit</u>
- 10. <u>http://m4.sourcingmap.com/photo_new/20111024/g/ux_a11102400ux0010</u> _ux_g03.jpg
- 11. http://www.beelee-switch.com/uploads/soft/120516/200D.pdf
- 12. www.st.com
- 13. www.honeywell.com/magneticsensors

Group Number: 8

John Murnane

Slide 17 of 18

