

REEF Subsonic Wind Tunnel Articulating Robotic Arm

TEAM 12: JACOB KRAFT, ANDREW BALDWIN, JUSTIN BROOMALL, AND CAITLAN SCHEANWALD

Sting Mount

Flexible Gear

Track

Guide .

Rollers

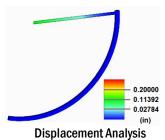
Housing

Rotary

Table Motor

Follower

Purpose


Design and produce a cost effective mechanism that can maintain and adjust the orientation of a test specimen in a subsonic wind tunnel.

Background

- · A wind tunnel is a research tool used to recreate flight conditions in a controlled environment
- It provides a cost effective method of testing by using models scalable through the use of dimensionless properties

Design and Analysis

VonMises Stress Analysis

Objectives:

- The structure must be able to withstand the maximum force generated by the wind tunnel which has a maximum velocity of 22 m/s
- The specimen must remain in the center of flow
- The specimen must have an adjustable angle range of -5° to +20° for pitch and $\pm 10^\circ$ for yaw

Testing Assumptions:

- Maximum coefficient of drag and lift on arc are CD=1 and CL=2
- Maximum allowable flow blockage is 10%*Tunnel Area
- A multiplier of 1.5 is applied forces to account for unsteady loading
- Testing loads were applied to the end of the sting mount

Design Specifications:

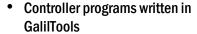
- The arc has a radius of 25in.
- All components excluding gears, rollers, shafts, bolts, and screws are machined from aluminum 6061

Software

LabVIEW for user interface

Arc

Stepper


Motor

Base

Plate

Worm Gear

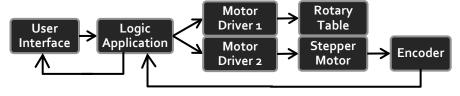
DMC (Digital Motion Controller) code for motor initialization and commands

 Shared library enables software communication

GalilTools

Hardware

Velmex stepper motor rotary table with magnetic reed homing switch



Anaheim Nema-23 stepper motor with encoder

Galil DMC-4040 Motion Controller

System Operational Flow

Future Improvements

- Redesign the base plate with a shaft to fit in the rotary table and add an absolute encoder to the base
- Add a gyroscope (or similar sensor) to the sting for more accurate feedback of actual specimen position
- Incorporate sensors for testing needs in the system and user interface