Development of Hammer Blow Test to Simulate Pyrotechnic Shock

Midterm 1 Presentation

<u>Team 15</u>

Charles DeMartino Chad Harrell Chase Mitchell Nathan Crisler

Sponsor – Harris Corp.

Mr. Robert Wells Mrs. Sarah Cooper Mr. Giann Cornejo

<u>Advisor</u>

Dr. Kumar

Instructors

Dr. Shih Dr. Gupta

> Nathan Crisler PyroShock

Team 15 Slide # 1

Table of Contents

- Project Overview
- Background & Theory
- Project Scope
- Constraints & Specifications
- Prototype
- Current Status
- Schedule and Plan of Action
- Q & A

Team 15 Slide # 2

Project Overview

- The 5 W's:
 - Who?

Harris Corporation

What?

Develop pyrotechnic shock testing machine emphasizing adaptability and tuning

➢ Why?

Current test methods iterative, time consuming, and not easily adaptable

When?

August 2014 – April 2015 (8 months)

Where?

FSU/FAMU College of Engineering

(AME) Aero-Propulsion, Mechatronics& Energy Facility

(HPMI) High Performance Material Institute

Team 15 Slide # 3

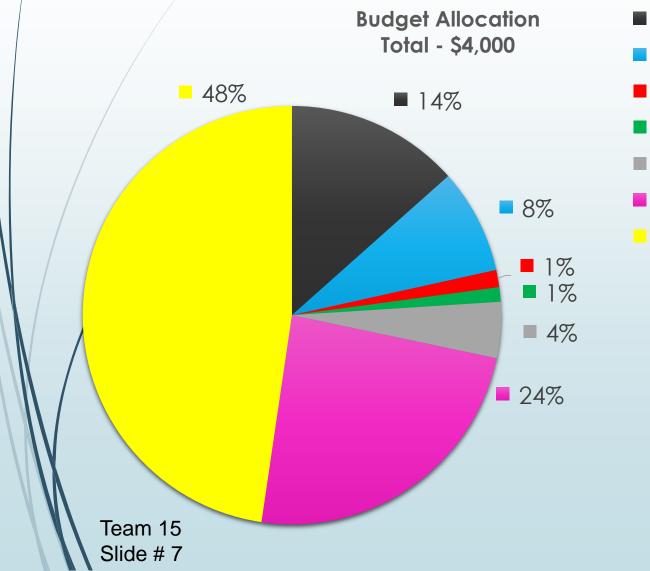
Background

- Explosive components commonly used in satellite systems
 - Stage separation, antenna deployment
- High acceleration, high frequency transient shockwaves
 - Damage or disable sensitive equipment
 - Characterized with SRS Curves due to complex nature
- Harris Corp. seeking system level method of modeling and analysis
 - Evaluate test parameters
 - Tunable response
 - Avoid trial and error
- Calls for
 - Adaptable testing apparatus
 - Reference materials from preliminary testing

Team 15 Slide # 4

Theory

- High acceleration, high frequency, transient nature
 - > Difficult to specify or recreate
- Impact Force generated: Various methods
- Effects captured by Accelerometer & DAQ system
- Acceleration time history processed into SRS Curve
- SRS Shock Response Spectrum
 - From time domain to frequency domain
 - Provide quantitative measure
- Used to predict effects on sensitive system electronics [1]

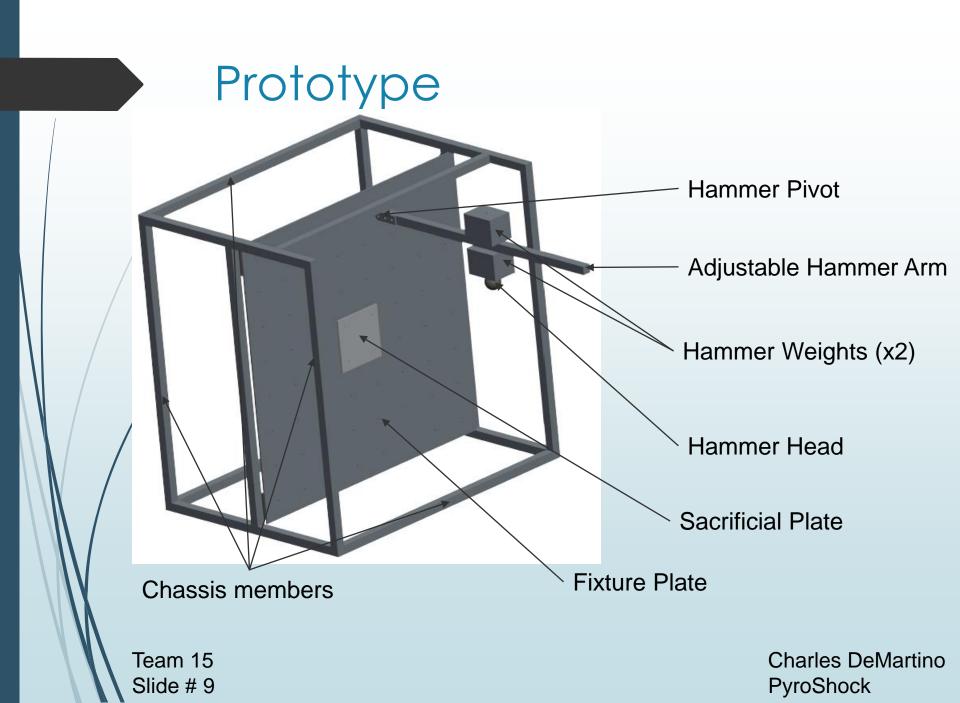

Team 15 Slide # 5

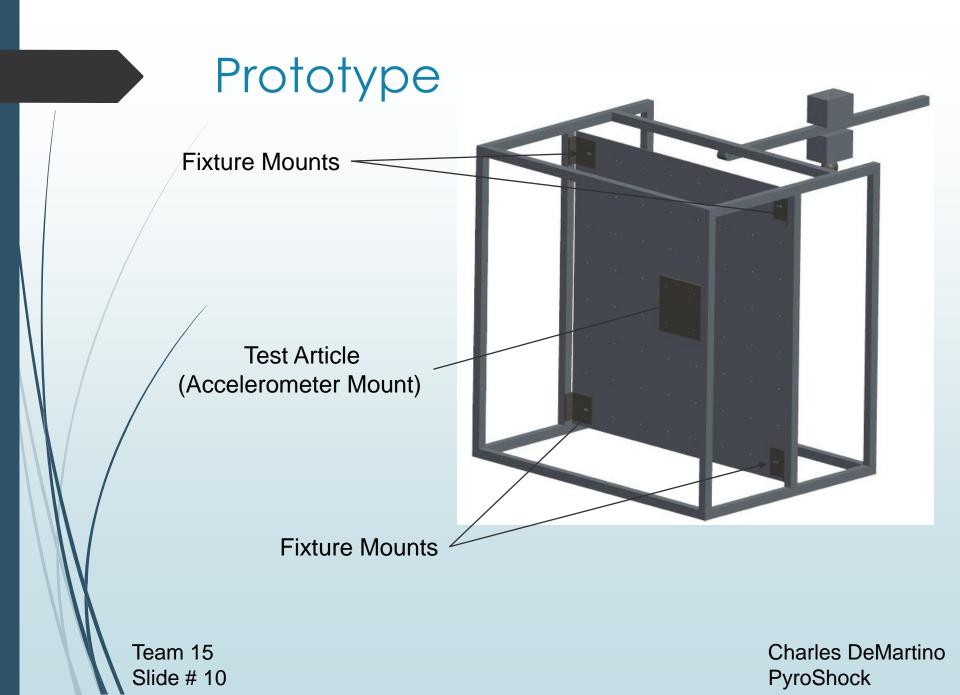
Project Scope

- Two year project
 - Year 1 Proof of concept, small scale testing
 - Year 2 Full scale testing
- Design & build a capable test rig
 - CAD Model & Simulations
 - Manufacture actual test rig
- Develop software to convert test data to graphical plot
 - Swallwood Recursive Method
- Compile catalogue of experimental data and variables
 - Matlab, Excel
- Budget: \$4000

Team 15 Slide # 6

Project Scope (cont.)




\$537.00
\$324.21
\$53.14
\$44.76
\$173.24
\$960.80
\$1,926.85

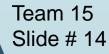
Constraints & Specifications

- Test article size up to 8 x 8 x 6 inches
 - Selected article: 6" x 6" x 0.5" low carbon steel
- Test article weight up to 10 lbs
 - Article weight: 5.1 lbs
- SRS response up to 500g acceleration and 10 kHz
 - Stay within tolerances set by MIL-STD-810 G, Method 517.2, Proc III
 - Anticipated Maximum Force Generated: ~6000g (8.31lb hammer)
- Project expenses must stay within allotted budget (\$4000)
 - Funds Used: \$2093.15
- Acceleration data acquisition that covers generated force ranges
 - DAQ Specs: Current Power Source (4110c), Accelerometer (3086A4T), Line Filter (TBD), 12 bit A-D card (TBD)
- Software conversion for raw data to usable SRS curves
 - Smallwood Recursive Matlab script

Team 15 Slide # 8

Current Status

Action item	Priority (1-5)	Status
CoE Machine shop - tuning bands	1	Dimensional analysis in process; order & submit by EoW
Quick release setup	1	Developing simple & reliable catch & release.
Large plate to HPMI	2	Approved and in process
CoE Machine Shop parts	2	Approved and in process
D.A.Q. Equipment	2	P.O. Approved & in process Dytran 3086A4T, 4110C Power Supply, 20ft Accelerometer -> BNC Cable.
Customize Matlab Script	3	Acquired scripts. Sifting through for specifics
Documentation	3	Continuing effort: DAQ Setup, Modeling & Simulation parameters, Assembly procedure, Experimental Tracking Sheets,
Creo dynamic modeling	4	Simplified plate modeling; Impact velocity, Angular acceleration, Modal up to 10kHz done.
Abaqus drop simulations	5	Refining model; Mesh size issues, Contact interactions.
Operation Manual	5	Continuing Effort Due 4/3
Design Report	5	Continuing Effort Due 4/3


Team 15 Slide # 12

Schedule

ID	NBS	Task Name
1		Prototyping
2		Reporting
32		Procurement
33		Submit Purchase Orders
34		Inventory Orders
35		Submit Addt'l Orders (if necessary)
36		Manufacturing / Assembly
37		Submit CAD Drawings for Machining
38		Assemble Chassis
39		Assemble Striking Hammer
40		Mate Chassis & Hammer
41		Test Fit Full Assembly
42		Analytical Modeling
43	L.4.1	Obtain & Verify Smallwood Code
44		Verify CAD Models & Simulations
45	L.4.3	Build MATLab SRS Processing Program
46	1.4.4	Test SRS Processing with CAD Sims
47	L.4.5	Submit MATLab Code to Mr. Wells for Verification
48	L.4.6	Continuous Simulations and Refinement
49	L.5	D.A.Q.
50	L.5.1	Build Lab View Module
51	1.5.2	Test Equipment
52	L.5.3	Calibrate Accelerometer
53	L.6	Experimental Modeling
54	L.6.1	Final Assembly: Chassis & Hammer
55	1.6.2	Baseline Testing
56	L.6.3	Test Parameter 1 (Article Location)
57	l.6.4	Test Parameter 2 (Strike Location)
58	L.6.5	Test Parameter 3 (Plate Boundary Conditions)
59	1.6.6	Test Parameter 4 (Hammer Tip Shape)
60	l.6.7	Test Parameter 5 (Stiffining plates)
61	l. 7	Documentation
62	l.7.1	Track MATLab Modifications
63	l.7.2	Record D.A.Q. Setup and Calibration Procedure
64	l.7.3	Record Testing Results (1)
65	1.7.4	Record Testing Results (2)
66	L.7.5	Record Testing Results (3)
67		Record Testing Results (4)
68		Record Testing Results (5)
69		Assemble Database of Results
70		Final Product

 [1] Robert, Wells. "University Capstone Development of Hammer Blow Test Device to Simulate Pyrotechnic Shock 2 Year Project." 6 Jan. 2015. Web. 7 Jan. 2015.

http://eng.fsu.edu/me/senior_design/2015/team15/

Team 15 Slide # 15