Determining the Effectiveness of Oleophobic Gaskets

Midterm Presentation 1

Sponsor: Cummins Inc. Advisor: Dr. William Oates Instructors:

Dr. Nikhil Gupta Dr. Chiang Shih Team #1: Heather Davidson David Dawson Aruoture Egoh Daniel Elliott Norris McMahon Erik Spilling Date: 10/22/2015

Agenda

- Project Background
 - Background Information
 - Project Needs and Goals
 - Objectives
 - HOQ
- Concept Generation
 - Making Oleophobic Gaskets
 - Product Specifications
 - Test Rig Concepts
 - Measuring Leak Rate
- On Going Work
 - Challenges
 - Projected Schedule
 - Future Work

Summary

Figure 1. Nonoleophobic vs Oleophobic surface¹

Figure 2. Typical gaskets found on an engine²

Background Information

- Oleophobicity is a physical property of a molecule that causes it to repelled from oil
 - Must have lower surface energy than oil
- Gaskets
 - Mechanical seal which can be created using a variety of materials and shapes
 - Placed in a space between two surface and will create a seal while under compression between the two surfaces
- Four most common gaskets types:
 - Paper
 - Molded Elastomeric (O-rings)
 - Rubber Coated Metal
 - Formed in Place Gasket

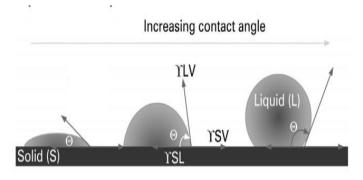


Figure 3. Increasing the contact angle will cause substance to bead up instead of lay flat³

Figure 4. Paper, o-ring, and a rubber coated metal gasket⁴

Project Needs and Goals

- Needs Statement:
 - Gaskets used at large joints where the oil is at low pressure leak more oil than desired.
- Goal Statement:
 - Determine the effectiveness of oleophobic gaskets through the use of a test rig designed by the team.

Objectives

Objective Number	Objective
1	Research what causes items to become oleophobic.
2	Create oleophobic gaskets using on market products.
3	Create oleophobic gaskets using non conventional gasket materials
4	Design and build the test rig to be capable of varying pressure and temperature
5	Test oleophobic gaskets and currently used gaskets for leak rate and compare results

House Of Quality

Direction of Improvement		Down	N/A	Down	N/A	Up				
	_	Engineering Characteristics				Г	++		Strong positive	
Customer Requirements	Customer Importance	Gasket Leak Rate	Flange Surface Roughness	Project Budget (\$)	Test Rig Pressure (psi)	Oil Temperature (°C)		+		Positive
		(sccm)	(μm)					-		Weak
\$2,000 budget	8	Δ	Δ	•	0	0				Strong weak
Test various pressures	7	0		0	•			•		
Test various								•		Strong (9)
roughnesses	6	0	•	0				0		Medium (6)
Comparable performance	9	•	Δ		0	o	╞	Δ		Weak (3)
Test various oil temp.	7	ο		0		•	L			
Absolute Importance		225	145	192	165	165				
Relative Importance		0.26	0.16	0.22	0.18	0.18				
Rank Order of ECs		1	4	2	3	3				

+

++

++

Figure 5. HOQ

Making Oleophobic Gaskets

- Standard methods of making oleophobic surfaces
 - Coat
 - Submersing the surface in the liquid for a uniform coat on both sides
 - Spray
 - Using a sprayer such as an air brush or paint gun to use a consistent and constant applied spray
 - Impregnator solution
 - Sealer that penetrates the surface to allow for protecting from dense liquids such as oil
- Non-traditional gaskets
 - Teflon gaskets
 - Naturally has oil repellent properties
 - Coat a high density fabric or other material with an oleophobic solution to create a unique oleophobic gasket

Product Specifications

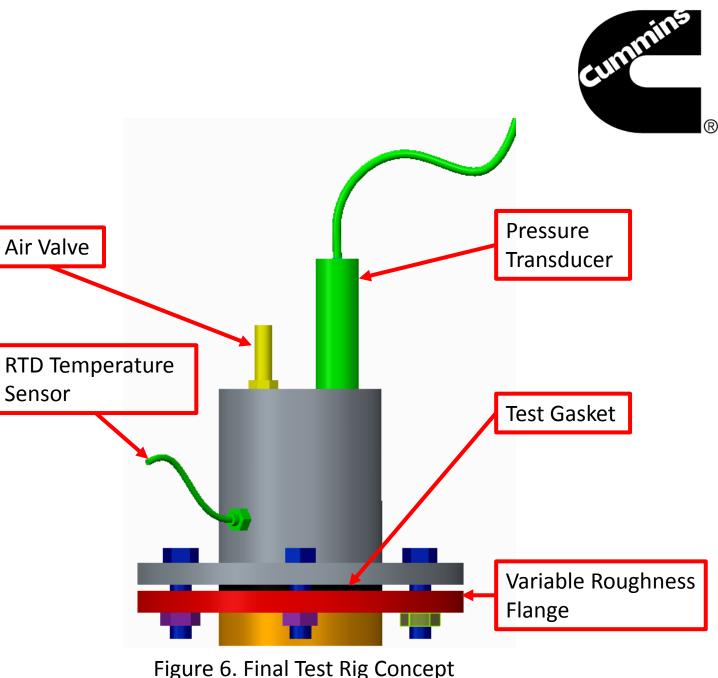
• Design Specifications:

Design Specifications	Value			
Test Rig Dimensions	Inner Diameter: 55 mm			
Test Rig Stress Capacity	Dependent upon analysis. Must withhold maximum pressure of 50 psi.			
Flange Dimensions	Inner Diameter: 55 mm Outer Diameter: > 120 mm			
Clamping Pressure	Minimum: 1 MPa (Molded Elastomer) Maximum: 20 MPa (Paper)			

- Performance Specifications:
 - Measure temperature: 22-125°C ± 2°C
 - Measure pressure: 0-50 psi ± 0.1 psi
 - Simulate actual seal

Test Rig Concepts

			NPT Threaded Removable Flanges			
	Weight	#1	#2	#3	#4	#5
Number of Leak Paths	0.25	ο	0.3	1.3	2.0	2.0
Ease of Assembly	0.1	0	-0.3	1.0	1.3	1.0
Machinability	0.1	0	-0.7	1.3	1.7	1.7
Temperature Variation	0.2	0	0.0	0.3	0.7	1.0
Pressure Variation	0.2	0	0.0	0.0	0.3	0.7
Durability	0.1	0	-0.3	1.0	0.0	1.0
Cost	0.05	0	-0.3	1.0	1.3	1.7
Total	1	0	-0.1	0.8	1.1	1.3
Rank		4	5	3	2	1


Table 1. Pugh Decision Matrix for Test Rig Design

cummi

R

Final Concept

- Pressure transducer, air valve, and oil inlet valve on top surface
- RTD temperature sensor mounted to the side face
- Bottom flange (red) will the interchanged to vary surface roughness
- Four M8 bolts used to create a clamping load on the gasket

Internal Features of Test Rig

- Gasket geometries capable of testing:
 - O-ring
 - Flat Gaskets
- RTD Sensor completely submerged in oil
- Pressure transducer open to air cavity

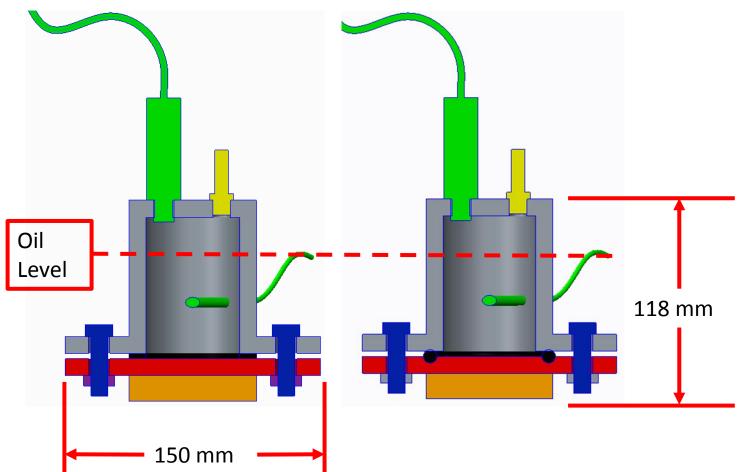


Figure 7. Comparison of Flat Gasket (left) to O-Ring Gasket (right) within Test Rig

How to Measure Leak Rate

Ideal Gas Law

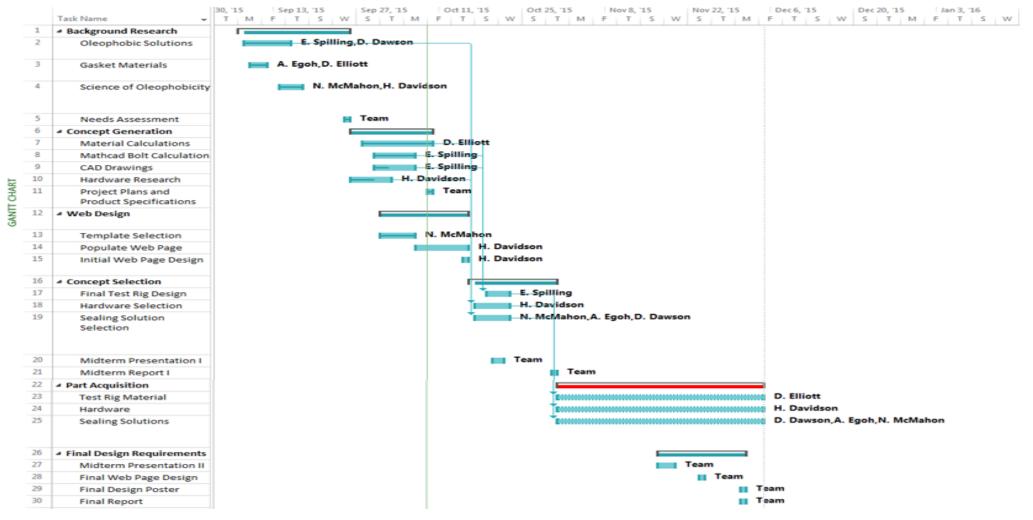
- PV = nRT
 - Knowns: initial pressure and volume of the air (oil volume is constant because oil is incompressible)
 - nRT will remain constant throughout test
 - Therefore $P_1V_1 = P_2V_2$
 - Solve for final volume V₂
 - Change in volume/time = leak rate
- Compressed air used to increase initial pressure
- Hot plate used to vary oil temperature

Figure 8. Pressure transducer⁵

Overcame Challenges: Minimizing unwanted leak paths in design

Challenges

- Obtaining a measurable leak rate
- Varying the surface roughness of test rig
- Cylindrical vs Rectangular Cross Section test rig
- Identified best heating method
- Identified best method to inducing elevated pressure


• Anticipated Challenges:

- Measuring the flange surface roughness
- Obtaining gaskets of each type which are similar in shape and dimensions
- Recently given additional objective of creating a gasket with non-traditional materials
- Obtaining consistent bolt loads based on torque input

Projected Schedule

Presenter: Aruoture Egoh

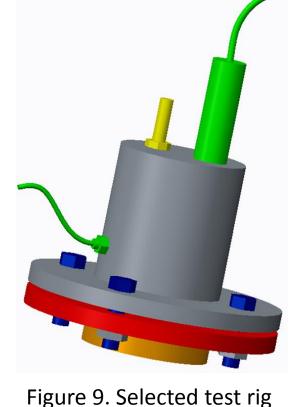
cummins

Future Work

- Determine test rig material
- Determine a method to create flanges with different surface roughness
- Calculate required wall thickness of test rig
- Purchase oleophobic solutions for gaskets
- Create non-conventional oleophobic gaskets
- Create detailed test rig CAD drawings
- Purchase test rig raw materials and sensors

Summary

- Goal
 - Determine the effectiveness of oleophobic gasket through the use of a designed test rig
- In order to accomplish this:
 - Design a test rig
 - Coat the gasket with an oleophobic solution
 - Vary the temperature and pressure in the test rig
 - Measure the leak rate


Challenges

- Varying surface roughness
- Minimize unwanted leak path
- Obtaining a measurable leak rate
- Key next steps:
 - Defining detailed final design
 - Purchase test rig raw materials and sensors
 - Inducing surface roughness

-

concept

Reference

[1] http://www.spigen.co.uk/galaxy-s4-screen-protector-glas-t-nanoslim-premium-tempered-glass-oleophobic-coating.html#.VifZv36rS70

[2] http://www.discountcarpartsonline.co.uk/car-parts/engineparts.html

[3] http://www.astp.com/wp-content/uploads/2010/06/VCA-Blog-1C.jpg

[4] http://www.sjscycles.co.uk/images/products/medium/15601.jpg

[5] http://www.omega.com/pptst/PX302.html