Determining the Effectiveness of Oleophobic Gaskets

Midterm 2 Presentation

Sponsor: Cummins Inc. Advisor: Dr. William Oates Instructors:

> Dr. Nikhil Gupta Dr. Chiang Shih

Team #1: Heather Davidson David Dawson Aruoture Egoh Daniel Elliott Norris McMahon Erik Spilling Date: 11/17/2015

Agenda

- Project Background Recap
- Test Rig Design
- Gasket Testing
- Financial Prediction
- On Going Work
- Summary

Background Information

- Oleophobicity
 - Physical property of a molecule that causes it to repel oil
 - Must have lower surface energy than oil
- Gaskets
 - Mechanical seal created using a variety of materials and shapes
 - Placed in a space between two surfaces and will create a seal while under compression
- Four common gaskets types:
 - Paper
 - Rubber Coated Metal
 - Molded Elastomeric (O-rings)
 - Formed in Place Gasket

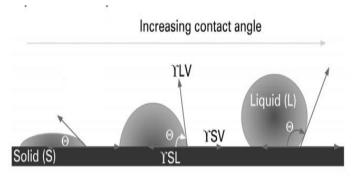


Figure 1. Substance beads up with a high contact angle¹

Figure 2. Paper and a rubber coated metal gasket²

Project Needs and Goals

- Needs Statement:
 - Gaskets used at large joints where the oil is at low pressure leak more oil than desired.
- Goal Statement:
 - Determine the effectiveness of oleophobic gaskets through the use of a test rig designed by the team.

Updated Objectives and Scope

Objective Number	Objective	
1	Research what causes items to become oleophobic	
2	Create oleophobic gaskets using current market products	
3	Create oleophobic gaskets using non conventional gasket materials	
4	Design and build the test rig to determine leak rate at different temperatures and clamping pressures at a stipulated pressure (2.5 psi)	
5	Test new oleophobic gaskets and currently used gaskets for leak rate and compare results	

- Revisions to the Project Scope:
 - Vary the clamping load instead of varying the internal pressure
 - Varying the surface roughness no longer a parameter.
 - Maintain a surface roughness less than 3.2 micron RA.

Test Rig Product Specifications

• Design Specifications:

Design Specifications	Value
Test Rig Dimensions	Inner Diameter: ≤ 55 mm
Test Rig Stress Capacity	Minimum of bottom flange: 4.94 mm Vessel thickness not critical as pressure difference nearly negligible.
Flange Dimensions	Inner Diameter: ≤ 55 mm Outer Diameter: > 140 mm
Clamping Pressure	Minimum: 0.5 MPa Maximum: 10 MPa

- Performance Specifications:
 - Measure temperature: 22-120°C ± 2°C
 - Measure internal pressure: 0-5 psi ± 0.01 psi
 - Simulate actual seal

How to Measure Leak Rate

- Ideal Gas Law
 - PV = nRT
 - nRT will remain constant throughout test
 - Therefore $P_1V_1 = P_2V_2$
 - Solve for final volume V₂
 - Change in volume/time = leak rate
- Compressed air used to increase initial pressure
- Hot plate used to vary oil temperature

Figure 3. Pressure transducer³

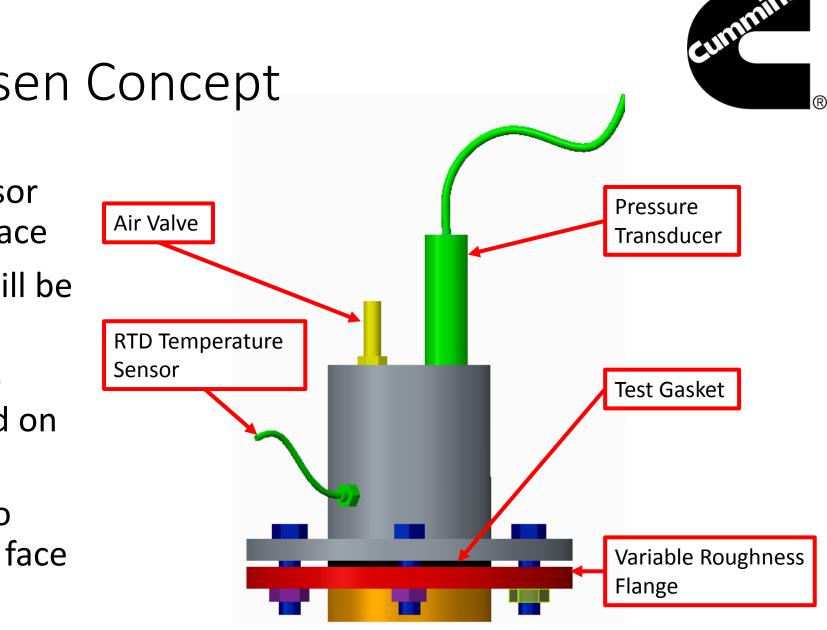


Figure 4. Previously Selected Test Rig Concept

Previously Chosen Concept

- RTD temperature sensor mounted to the side face
- Bottom flange (red) will be interchanged
- Four M8 bolts used to create a clamping load on the gasket
- Bottom spacer used to keep bolts off bottom face

FMEA Table

Component	Mode Of Failure	Cause	Probability	Effect	Severity	Recommended Action
	Bending	Torque	4	Increase in leak rate		Monitor torque wrench
Flanges	Surface Roughness	Machining Flaw	2		2	Follow machining standards
	Blowout	Material selection	1	Safety hazard	5	Material testing
Gasket	Oil leak	Improper materials	4	Increase in leak rate	4	Material testing
		Leak paths	6		2	Design selection
Pressure	Crack /broak	Material selection	1	Discourt	6	Factor of Safety
Vessel	Crack/break	Tolerances	2	Blowout		
Sensors	Overload		1	Inaccurate results	6	Consult sensor data sheet
	Accuracy	Improper selection				

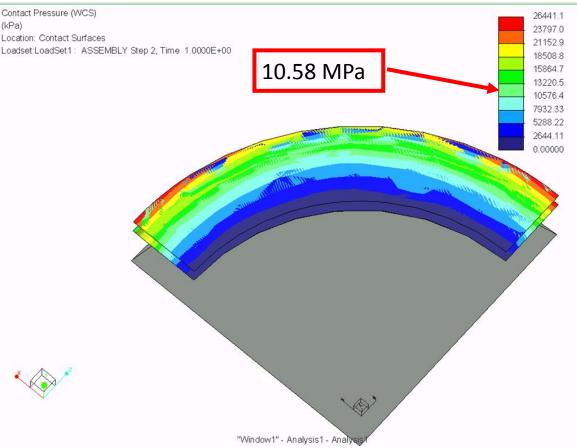
Ranking Scale: 1-6; 1 = Low 6 = High

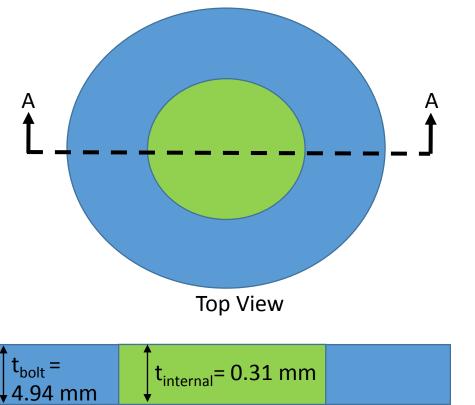
Gasket Pressure Distribution FEA

 Needed to confirm four bolts was suitable for design

Desired Gasket Clamping Pressure (MPa)	Calculated Required Bolt Load (kN)	
0.5	0.255	
2	1.020	
10	5.100	

- Results confirmed that the use of four bolts was sufficient
 - Gasket face never had a path of less than desired clamping pressure




Figure 5. FEA of the pressure distribution along the gasket due to the bolt load of 5.1 kN (10 MPa clamping pressure)

Material Thickness Verification

- Minimum bottom flange thickness
 - Material chosen: A36 Steel
 - Green section: internal stress limited $(\sigma_{max internal} = 2.5 psi)$
 - Blue section: clamping bolt pressure $(\sigma_{max bolt} = 10 \text{ MPa})$

Section	Minimum Thickness (mm)
Internal	0.31
Bolt	4.94
Overall Bottom Flange	4.94

Section A-A

Figure 6. Bottom removable flange

Selected Sensors

- Omega Resistance Temperature Detector (RTD) Sensor
 - Required range: 22 120°C
 - Accuracy: ± 2°C
 - Length probe restriction (<55 mm)
 - Compression fitting
- Kulite Pressure Transducer
 - Required range : 0 5 psi
 - Accuracy: 0.005 psi
 - Used in further leak measurement calculations

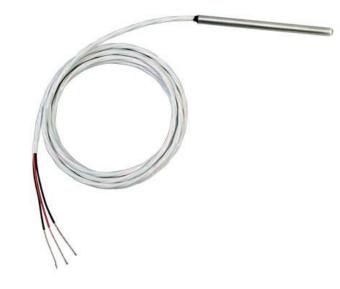


Figure 7. Short RTD probe (PR-20-2-100-3/16-2-E-T)⁴

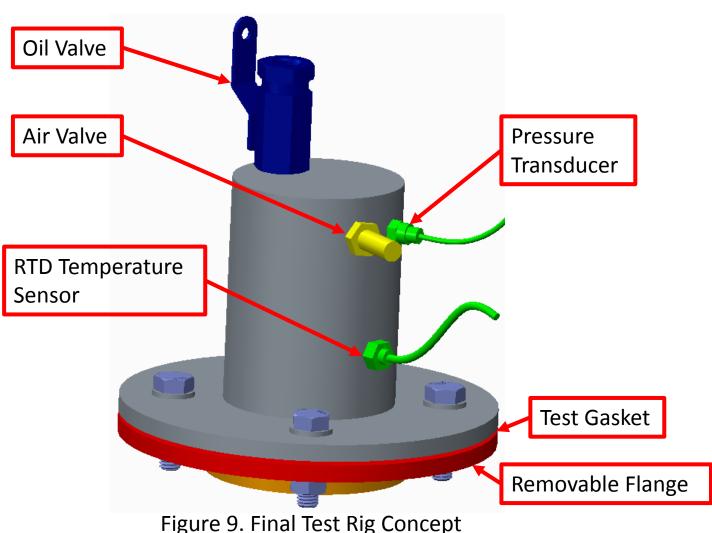
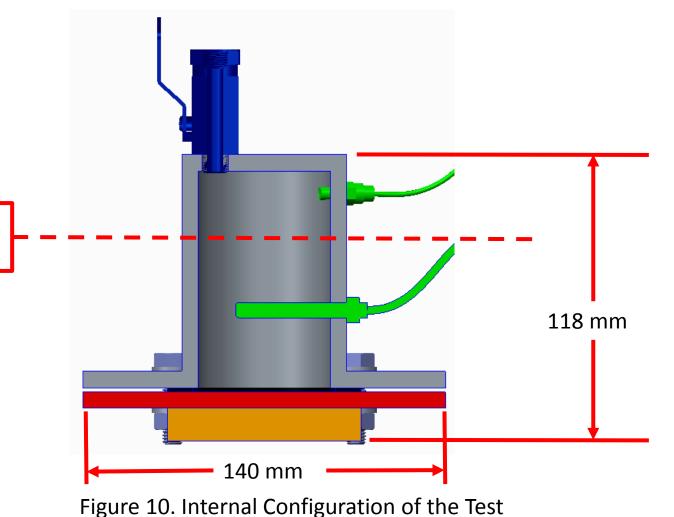


Figure 8. Pressure Transducer (XT-123B-190-5G)⁵

Final CAD Model of Test Rig

- Oil inlet valve on top surface, offset from the center of the test rig
- RTD temperature sensor, pressure transducer, and air valve are mounted to the side face
- Bottom flange (red) will be interchanged
- Four M8 bolts used to create a clamping load on the gasket


Internal Features of Test Rig

Oil

Level

Rig

- RTD sensor completely submerged in oil
- Pressure transducer and air valve open to air cavity
- Oil valve near the interior edge to allow for easy draining
- All material is 6.34 mm (0.25 in)

Making Oleophobic Gaskets

- Standard methods of making oleophobic surfaces
 - Spray
 - Using a sprayer such as an air brush or paint gun to apply a consistent and constant spray
 - Impregnator solution
 - Sealer that penetrates the surface to allow for protecting from dense liquids such as oil

Non-traditional gaskets

- Teflon gaskets
 - Naturally has oil repellent properties
- Coat a high density fabric or other material with an oleophobic solution to create a unique oleophobic gasket

Baseline Gasket Material Testing

• Preliminary testing has been conducted to see if the gasket materials and oleophobic solutions would be viable for this experiment

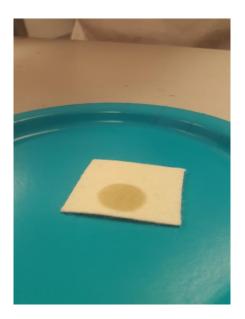


Figure 11. Top view of fiber felt without any solution. Presenter: David Dawson

Figure 12. Bottom view of fiber felt without any solution.

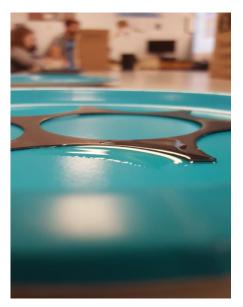


Figure 14. RCM gasket after attempted oil removal.

16

Figure 13. Rubber coated metal gasket without any solution.

Baseline Gasket Material Testing

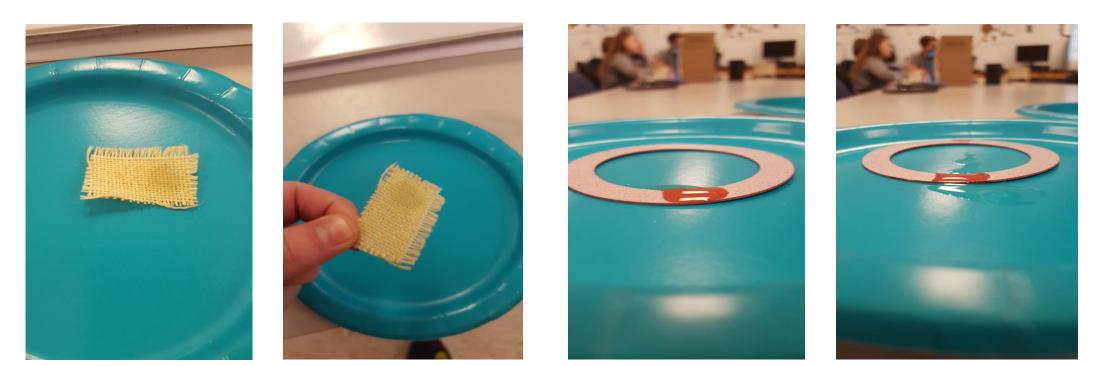


Figure 15. Top view of fiber cloth without solution. Figure 16. Bottom view of fiber cloth without solution.

Figure 17. Paper gasket without solution. Figure 18. Paper gasket after attempted oil removal.

Oleophobic Gasket Material Testing

Figure 19. Fiber felt
after impregnationFigure 20. Fiber felt
after impregnation

and oil has run off



Figure 21. Fiber felt after spray application and oil droplet dispersed

after impregnation and oil droplet dispersed

Presenter: David Dawson

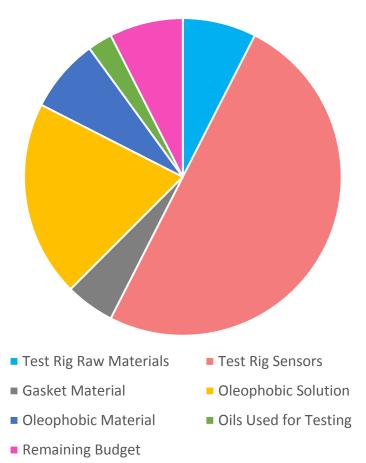
Oleophobic Gasket Material Testing

Figure 23. RCM gasket after spray and oil droplet dispersed.

Presenter: David Dawson

Figure 24. Fiber cloth material after impregnation and oil droplet dispersed.

Figure 25. Paper gasket after impregnation and oil droplet dispersed.


Budget Forecast

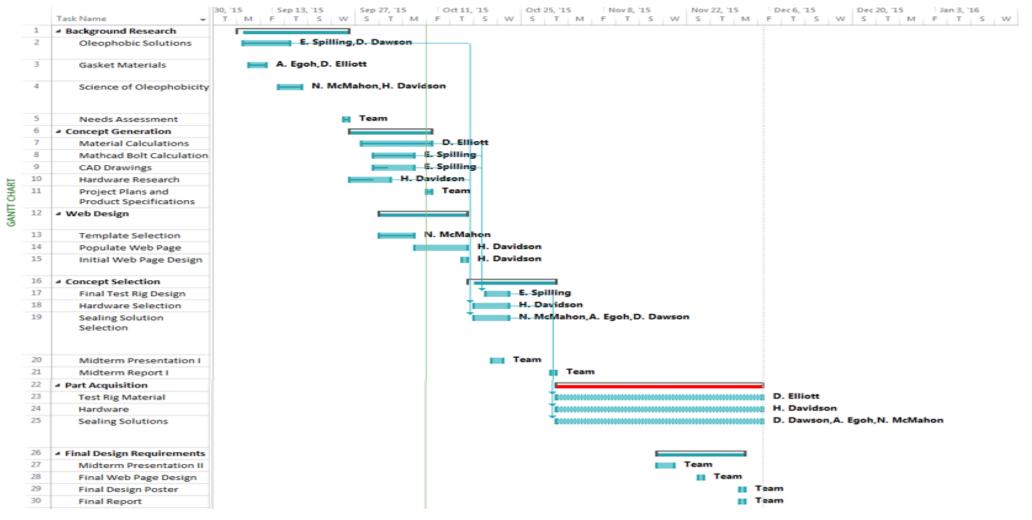
- Budget provided: \$2,000
- Total estimated cost: \$1,850

Item	Maximum Estimated Cost
Test Rig Raw Materials	\$150.00
Test Rig Sensors	\$1,000.00
Gasket Materials	\$100.00
Oleophobic Solutions	\$400.00
Oleophobic Material	\$150.00
Oils Used for Testing	\$50.00
Remaining Budget	\$150.00

Budget Distribution

Purchased Items

Budget Category	Item	Quantity	Cost
Test Rig Material	M8 Class 10.9 Cap Screw	1 (Pack of 25)	\$7.91
Test Rig Material	M8 General Purpose Steel Washer	1 (Pack of 100)	\$6.09
Test Rig Material	M8 Class 10 Steel Nut	1 (Pack of 100)	\$10.48
Test Rig Material	Compact High-Pressure Brass Ball Valve	1	\$11.34
Test Rig Material	Brass Air Fill Valve Straight	1	\$4.40
Test Rig Material	1ft x 1ft x ¼ in Thick A36 Steel Plate	1	\$15.41
Test Rig Material	1 ft Long 2-1/2 OD x 2 ID Round Steel Tube	1	\$36.04
Test Rig Sensors	Short RTD Probe	1	\$66.00
Test Rig Sensors	Compression Fitting	1	\$20.00
Oils Used for Testing	T Triple Protection CJ-4 15W-40 Motor Oil	1 (Gallon)	\$13.44
	Total		\$191.11


Future Challenges

- Determine consistent methods of application for the oleophobic solutions
- Accurately measure the clamping pressure
- Creating gaskets from unconventional materials, such as woven fabric

Projected Schedule

Presenter: David Dawson

Future Work

- Complete preliminary testing of gasket materials
- Final ordering of materials/hardware
- Fabrication of the test rig
- Actual testing preparations
- Set standard procedure for leak rate measurement
- Collection, manipulation and analysis of data using standard methods
- Final experimental comparison/deduction

Presenter: David Dawson

Summary

- Goal:
 - Determine the effectiveness of oleophobic gaskets through the use of a designed test rig
- Completed Tasks:
 - Material selection analysis
 - Clamping pressure analysis
 - Final design of test rig
 - Sensor selection
- Key next steps:
 - Complete the purchasing of materials
 - Start the machining process

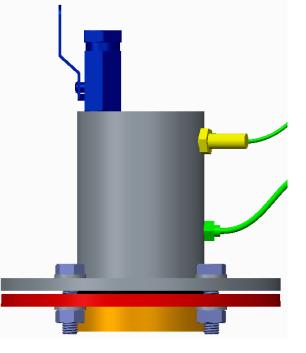


Figure 26. Test Rig Design

Reference

[1] http://pubs.rsc.org/en/content/articlehtml/2014/cs/c3cs60415b
[2] http://store.jamesgaskets.com/product_info.php?products_id=742&os Csid=4s6r9tgqtdt3s1tfi5q7puf9t2

[3] https://www.omega.com/subsection/voltage-output-pressuretransducers.html

[4] http://www.omega.com/pptst/PR-20.html

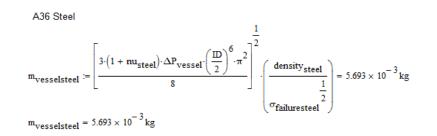
[5] http://www.kulite.com/products.asp?p=4-1

Appendix

 $\sigma_{\texttt{clamping}} \coloneqq \texttt{10MPa}$

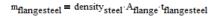
 $\sigma_{vessel} \coloneqq 2.5 psi = 0.017 \cdot MPa$

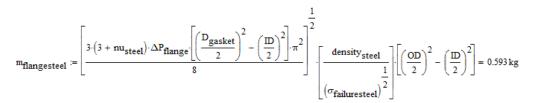
ID := 50mm


OD := 150mm

 $D_{\text{gasket}} \coloneqq 75 \text{mm}$ $A_{\text{vessel}} \coloneqq \pi \cdot \left(\frac{\text{ID}}{2}\right)^2 = 2.376 \times 10^{-3} \cdot \text{m}^2$ $nu_{\text{steel}} \coloneqq 0.26$ $A_{\text{flange}} \coloneqq \pi \cdot \left[\left(\frac{\text{OD}}{2}\right)^2 - \left(\frac{\text{ID}}{2}\right)^2\right] = 0.015 \text{ m}^2$

 $\sigma_{\rm failuresteel} \coloneqq 322.5 {\rm MPa}$


 $density_{steel} \coloneqq 7.85 \cdot 10^{6} \frac{gm}{m^{3}}$ $P_{atm} \coloneqq 14.696 psi = 0.101 \cdot MPa$ $\Delta P_{vessel} \coloneqq P_{atm} - \sigma_{vessel} = 0.084 \cdot MPa$


 $\Delta \mathtt{P_{flange}} \coloneqq \sigma_{\mathtt{clamping}} - \left(\mathtt{P_{atm}} \right) = \mathtt{9.899} \cdot \mathtt{MPa}$

 $t_{vesselsteel} \coloneqq \frac{m_{vesselsteel}}{density_{steel} \cdot A_{vessel}}$

$$\sigma_{\text{failuresteel}} = \frac{3 \cdot (3 + nu_{\text{steel}}) \cdot \Delta P_{\text{flange}}}{8 \cdot t_{\text{flange}}^2}$$

 $m_{flangesteel} = 0.593 \, kg$

 $t_{flangesteel} \coloneqq \frac{m_{flangesteel}}{density_{steel} \cdot A_{flange}}$