Marine Keel Cooler Optimization Tool EML 4551C Senior Design

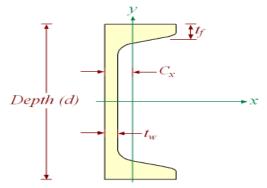
Presented 19 November 2015

Sponsored by Frank Ruggiero Faculty Advisor Steven W. Van Sciver, Ph.D. Instructor Nikhil Gupta, Ph.D.

Team 3

Melissa Allende Grady Beasley Stanko Gutalj James Haga Jacob Ross

Overview

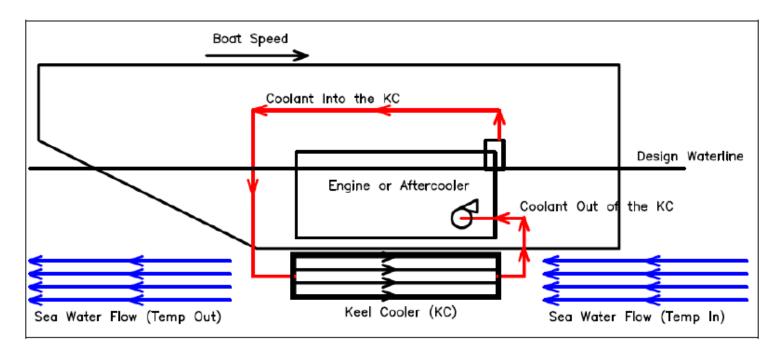

- What is a Keel Cooler
- Background and Theory
- Problem Statement and Goal
- Project Scope
- Software
- Hardware
- Scheduling and Resource Allocation
- Results
- Conclusion

What is a Keel Cooler?

 A heat exchanger used to cool marine engines that is located on the hull of a boat

Cross-section of standard c-channel

 $-b_f$


Background and Theory

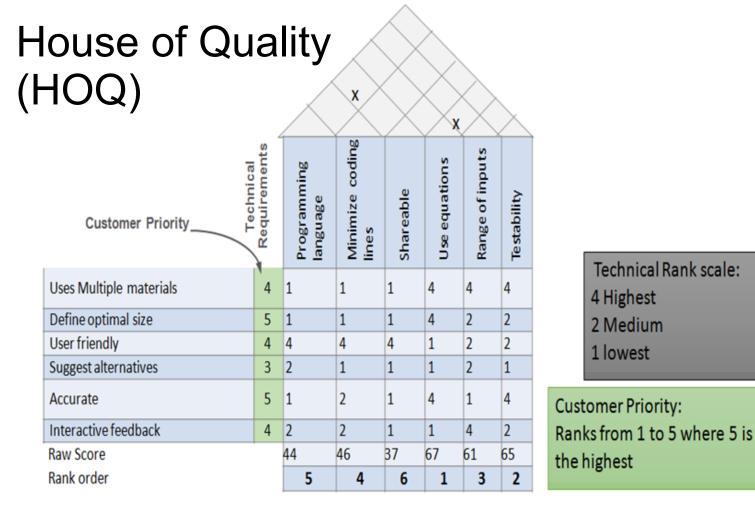
- Since cooling of engine is not possible to thoroughly rely on charged air circulation, an alternate system must be used
- Keel cooling is a cooling system which utilizes a group of tubes, pipes or channels attached to the outside of the hull below the waterline
- A properly designed and installed cooling system is essential for satisfactory engine life and performance
- Cummins Marine one of the Markets within Cummins Inc. is specialized in diesel engines outfitted to provide power in marine vessel applications

Background and Theory

Problem Statement & Goal

Problem Statement:

"The current Cummins Keel Cooler Tool provides no feedback on a particular design and is limited in its capability"


Project Goal:

"Design a more versatile design tool which generates feedback and provides a more user friendly interface"

Project Scope

- The current design has no customer feedback
- Only provides user an output of "Pass/Fail" on design
- Needs to provide recommendations for design improvement
- Current tool is outdated and not user friendly
- The device needs to be able to evaluate the design of the keel cooler through the use of different materials (Currently only evaluates steel)


```
Technical Rank scale:
```

4 Highest

2 Medium

1 lowest

Team 3: Marine Keel Cooler Optimization Tool

Design and Analysis

Choosing a Coding Language

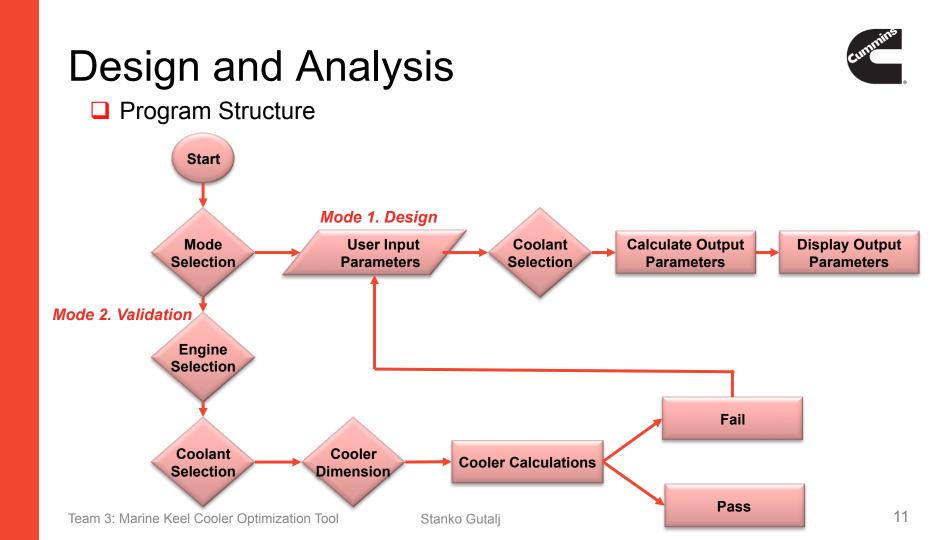
- C, Java, Matlab
- Judging criteria
 - ✓ Knowledge
 - Structure
 - Aesthetics
 - ✓ Relevance

Table 1: Decision Matrix

Program:	Knowledge	Structure	Aesthetics	Relevance	Total:
С	9	10	1	10	8.5
Java	2	7	8	8	4.2
Matlab	8	1	8	6	6.4

C was chosen due to Team Member familiarity and ease to convert to other languages if necessary

Current Validation Tool

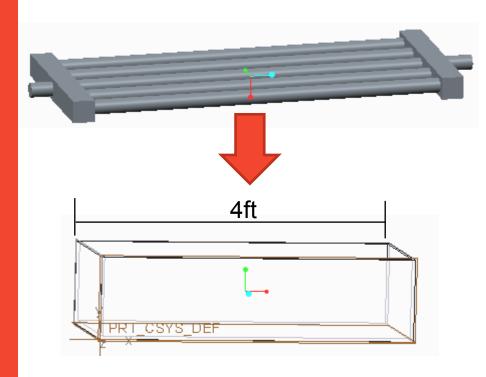

Current Program Specification Sheet

Stanko Gutalj

Team 3: Marine Keel Cooler Optimization Tool

Engine Data			
Engine Model			in
Engine Brake Horsepower	[BHP]		cummin
Engine Speed	[rpm]		Cu
Select a Cooling Circuit Type			
Total Circuit Heat Rejection	[BTU/min]		
Coolant Flow to Keel Cooler	[gpm]		
Engine Coolant Capacity	[gallons]		
Coolant Type (50/50 glycol or Water/DC	A)	Make a Selection	~
Maximum Sea Water Temperature	[deg F]	85	
Design Speed	[knots]		
Keel Cooler Data			
Standard Channel Size		Make a Selection	
Channel Width	[inches]		1
Channel Height	[inches]		8
Web Thickness	[inches]		
Cross Sectional (Web) Area	[sq. inches]		1
Coolant Velocity	[ft/sec]		
Channel Material		Steel	
Total Installed Keel Cooler Length	[feet]		
Thermal conductivity "k"	[BTU/hr-F-ft]	26.5	
Number of Flow Paths			
Results			
Actual KC Exterior Area	[sq. feet]		
Calculated Exterior Area	[sq. feet]		
Minimum Keel Cooler Length	[feet]		
Minimum Expansion Tank Capacity	[gallons]		
Passing Criteria	[Pass / Fail]		

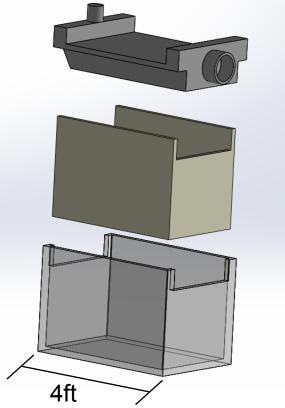
10



Hardware | Keel Cooler Simulation

- The team is designing a testing apparatus to simulate various keel cooler configurations
 - Number of flow paths
 - Surface Area
- Device must allow various measurements
 - Heat Dissipation
 - Mass Flow Rate
- The team reviewed 3 designs

Hardware | Design 1


Advantages

- 1. Cheap
- 2. Small
- 3. Easy to design/ machine

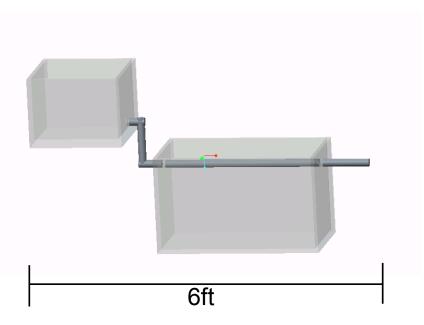
Disadvantages

1. Not made of C channels

Hardware | Design 2

Advantages

- 1. C-channel design
- 2. Simulates larger keel coolers


Disadvantages

- 1. Manufacturability
- 2. Expensive

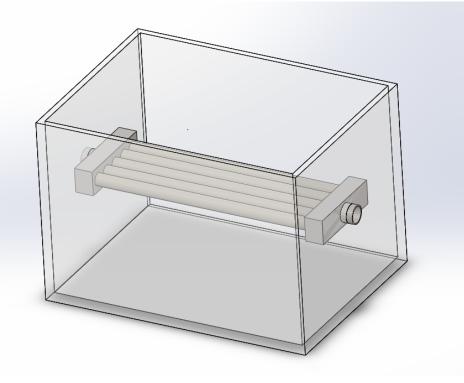
Hardware | Design 3

Advantages

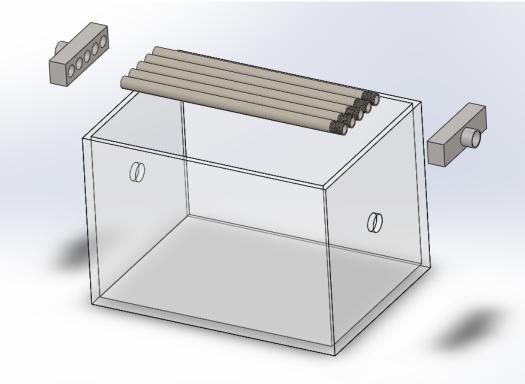
- 1. Very basic and cost effective
- 2. Easy to construct and deconstruct

Disadvantages

1. No multi-tube configuration


Hardware | Design Evaluation

- Categories ranked from 1 to 10
- Averaged to attain final score


Design	Manufacturability	Cost	Adaptability	Total
1	7	6	10	7.7
2	4	4	6	4.7
3	9	8	2	6.3

Hardware | Selected Concept Assembled View

Hardware | Selected Concept Exploded View

- Team visit to facilities
 - Trip to Cummins Marine Integration Center facilities Scheduled Spring 2016
 - Team expected to visit production facility Scheduled Spring 2016
 - Gain general assessment of keel cooler system:
 - Application
 - Functionality
 - Dimensions/specifications

- Work Breakdown
 - <u>Program:</u>
 - ✓ Stage 1: Catalog constant values in program
 - Stage 2: Incorporate thermodynamic formulae
 - Stage 3: Test/Debug
 - Stage 4: Add functionality for multiple materials
 - Stage 5: Test/Debug

- Work Breakdown
 - <u>Testing Apparatus</u>:
 - Propose three design concepts
 - Decision matrix for selection
 - Finalize design
 - Order materials
 - Build
 - Troubleshoot problems
 - Use to validate engineering principles

- Cost Breakdown
 - <u>Program:</u>
 - Coded using free software available to team
 - <u>Testing Apparatus</u>:
 - Round metal tubing: steel ~\$5 ft, aluminum ~\$6.50 ft
 - Pump: \$100-500
 - Flanges: \$2-50 (dependent on material, size, intricacy, etc.)
 - Fasteners/elbows: <\$500
 - Thermocouples: ~\$70

Risks

Possible Risks in Product Testing

Program

• No risk associated with program testing phase

Testing Hardware

- Building the testing apparatus
- Proper keel cooler connections
- Burns caused by piping and heating element
 Facilities
- Engine coolant burns at Cummins facility
- Engine overheating at Cummins facility (\$\$\$)

Risks

Possible Risks in Product Implementation

- Product is inaccurate
- Engine failure
- Tarnished reputation
- Risk Analysis
 - Concept Generation (No Risk)
 - Product Assembly (Low Risk)
 - Product Testing (Medium Risk)
 - Product Implementation (High Risk)

Project Outlook

Current/next Week:

- Put equations into program
- Finalize hardware design

□ Following Weeks:

- Continue work on program
- Order materials
- Update sponsor/advisor
- Plan for future

Project Outlook

product architecture	II uays	Tue 10/20/13	Tue 11/5/15	Nov 8, '15 Nov 15, '15 Nov 22, '15 Nov 29, '1 T F S M T F S S M S M S M S M S
Flow Chart	11 days	Tue 10/20/15	Tue 11/3/15	T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M
configuration design	11 days	Thu 11/5/15	Thu 11/19/15	
material selection	4 days	Thu 11/5/15	Tue 11/10/15	
Modeling parts	8 days	Tue 11/10/15	Thu 11/19/15	
parametric design	8 days	Fri 11/20/15	Tue 12/1/15	
Robust Design	2 days	Fri 11/20/15	Mon 11/23/1	
Tolerences	2 days	Tue 11/24/15	Wed 11/25/1	
Final Dimensions	2 days	Thu 11/26/15	Fri 11/27/15	
DFM	2 days	Sat 11/28/15	Mon 11/30/1	
Final Report	1 day	Tue 12/1/15	Tue 12/1/15	

Questions

Melissa Allende Grady Beasley Stanko Gutalj James Haga Jacob Ross

Team 3: Marine Keel Cooler Optimization Tool