DESIGN OF A QUIETER HAIR DRYER

MARCH 15, 2016

TEAM 6 SHAWN ECKERT KIET HO MARK JOHNSON PETER VAN BRUSSEL

SPONSOR DR. DEVINE

ADVISOR DR. CATTAFESTA

Presentation Overview

Mark Johnson

Project Scope Review of Performance and Sound Testing Fan System Analysis Entrepreneurial Update Gantt Chart

Current Problem

3

- Hair dryers can be very loud
 Causes unwanted noise in areas meant to be peaceful
 - Pet Grooming
 - Salons
 - Household Bathrooms

Project Scope

Mark Johnson

Our project scope is to identify the primary source of noise within a centrifugal type hand-held hair dryer, then make repeatable and measureable noise reduction improvements through modifications via design aspects, while maintaining its overall flow performance.

Standard Hair Dryer Components

5 Mark Johnson

Observed "Quiet" Models

Mark Johnson

6

Centrix Q-Zone

- Insanely QuietTM Technology
- Dual Vertical Air Intake
- Horizontally Positioned Centrifugal Housing
- Forward Curved Airfoil Blades
- □ Weight: 1lb, 8 oz.

UNISCENSE!

- Bio-Ionic Whisper Light
 - Ranked as one of the Quietest Dryers in the
 - World in 2012, according to Quiet Mark
 - Dual Horizontal Air Intake
 - Vertically Positioned Centrifugal Housing
 - Forward Curved Airfoil Blades
 - □ Weight: 1lb, 2 oz.

Experimental Setups Applied to Determine Performance and Sources of Noise

- 7 Mark Johnson
- Temperature Output
 - <u>Tools Used</u>: Infrared Thermometer
 - Performance based on rate of heat transfer
 - $\Box \dot{Q} = \dot{m} * C_p * \Delta T$

Velocity and Pressure

- <u>Tools Used</u>: Pitot Tube, Digital Manometer, Adjustable Measurement Device
- Allows us to determine velocity profile

Noise

- <u>Tools Used</u>: Anechoic Chamber, Free Field ¹/₄" Microphone
- Measurements taken around the device at locations above, level and below

Comparing Performance Results

8 Mark Johnson

	Centrix Q-Zone		Whisper Light	
	High	Low	High	Low
Quoted Power Rating	1500 W		1400 W	
Temperature 6 in. from nozzle	55° C 131° F	41º C 106 º F	65° <i>C</i> 1 50° F	50° C 122 ° F
Volume Flow Rate	0.0284 $\frac{m^3}{s}$ 60 cfm	$0.0201 \frac{m^3}{s}$ $39 cfm$	0.0226 $\frac{m^3}{s}$ 50 cfm	$\frac{0.0142}{30}\frac{m^3}{s}$
Motor RPM	514	360	730	520
Heating Rate (\dot{Q})	1190 W	495 W	1227W	508 W

Table comparing performance characteristics of two dryers

*cfm = cubic foot per minute

Noise Analysis Overview

9 Mark Johnson

- Sound Pressure Level determined by taking area under the spectrum
- A-weighted filter models human hearing; reducing contribution to SPL of low and high frequencies
- Human hearing is most sensitive between 1-2 kHz
- Blade Pass Frequency

 $\square \quad BPF = \frac{(RPM)*(\# of Blades)}{60}$

- Design aims are to push noise to lower frequencies to take advantage of A-weighted filter
- Examine noise contribution amongst various hairdryer components
 - Heating Element
 - Intake Covers
 - Fan Speed

Note: Frequency spectrum observed at side of intake of "Whisper" during <u>low speed</u> operation

Noise Source Contributions

10 Mark Johnson

Heating element removed for unimpeded flow through nozzle

Cover and baffle removed from intake

- Evaluation:
 - Noise generated by heating element is minimal
 - Baffles are necessary and must be used efficiently
 - □ Fan speed is largest contributor to noise level

"Hi" vs. "Lo" Fan Speeds

11 Mark Johnson

- A 40% increase in fan speed results in a SPL increase of 6-8 dB(A)
- **Conclusion:**
 - Improvements to the fan and blades will create an improved flow rate, this will allow for fan speed reductions
- Seeking noise reductions from fan modifications

for high and low speed settings

Fan Blade System Modifications

12 Shawn Eckert

- "Whisper Light" chosen for modifications
 - Justification:
 - Simple fan attachment mount
 - Louder of the two hair dryers

- Reduce the number of blades to a prime number
 - Decreases BPF
 - Tonal frequencies are spread out to reduce annoyance

- Increase blade size and surface area
 - Maintain volume flow
 - Reduce motor speed

Current Fan F	eatures
# of Blades	36
Blade Height	0.935 in.
Outer Diameter	3.05 in.

- Add servations to blades trailing edge
 - Break-up packets of air exiting blades

Product Development Process & Results

13 Shawn Eckert

- Produced new fan blades via selective laser sintering (SLS) 3D printing method thru 3DSystems supplier
- Prints in one solid part
- □ Has layer thickness of 0.1 mm

Schematic of SLS 3D printing process

- Printed, exact replica of original and also one with fewer blades
- Rougher surface finish than original
- Slightly heavier than original fan blade
 - Original 18 grams
 - 31 Blade 20 grams
 - □ 36 Blade 22 grams

SLS 3D printed fan

Testing 3D Printed Blades

14 Shawn Eckert

- Inserted blades into housing and ran on high speed
- Obvious imbalances in fan rotation
 - Generated amplified noise due to increased vibrations
- Seemed to produce comparable flow output

Replica Fan

Original and replica fans on high speed setting recorded in slow motion video on IPhone 6

Original Fan

Flow Simulations

15 Shawn Eckert

- Performed using SolidWorks
- Can measure flow rates, pressures and velocities for different fan configurations
- Visualize flow paths

Flow visualization lines with velocity contours

Future Design Plans

- Looking into methods to balance fans and reduce vibrations
 - Determine heavy side using a spindle
 - Add weight to lighter side to balance
 - Trial and error process
 - Increase stability of motor mount
- Will measure vibrations levels using a 3-axis accelerometer
- Perform flow simulation study using SolidWorks to test how fan modifications affect performance
 - Number of blades
 - Rotation speed
 - Added serrations

Entrepreneurial Progress

17 Kiet Ho

- Global Market
- Potential Customer Survey
- Business Model Canvas
- Engineering Shark Tank

Global Hair Products Market

18 Kiet Ho

The hair care market is growing

Shampoos, Conditioners, Relaxers, Gels, Hair Straighteners,...

Most importantly <u>Hairdryers!</u>

Today's Customers

19 Kiet Ho

- Mostly women have been consumers
- Men are now becoming consumers
- Pet groomers are also consumers
 - Pets with long and short hair
 - Animals are sensitive to loud sounds

Understanding Customers

Note: Data gathered using surveymonkey

Understanding Customers

21 Kiet Ho

Selling point

- Noise cancelling technology used in modern day aircraft (Can be <u>Sold</u> as a <u>Premium</u>)
- Indulgence of Luxury items something innovative is interesting and desirable

Competition

22 Kiet Ho

Competing Silencing Designs

- Attachable silencers
- □ Said to reduce noise level by 8 dB
- Only fits Parlux 3200 (Axial Fan Design)
- Adds weight to overall design
- Purchase separately (Not Integrated)

Centrifugal Style Hairdryer

Centrifugal blade design quieter than axial design

Silencer

Business Model Canvas

23 Kiet Ho				
The Business Model Canvas		Team or Company Name Hushdryer	Date: 03/2016	Primary Alternative
Key Partners	Key Activities	Value Proposition	Customer Relationships	Customer Segments
Funders FAMU & FSU COE Dr. Devine Advisor Dr. Cattafesta Accoustics & Permission Access Dr. Gupta & Shih Mechanical & Electrical 	 R&D to improve on current hairdryers Good Sales team Upfront in Retail Stores Online Shipping & Delivery Accessibilit 	y Product • High Performing & Quiet Hairdryer • Injection Molded High performing Centrifugal Blades • Noise Cancelling Technology	Purchasing • By Self(Online based, Pre- caution prior to FAQs) • By Engagement (Retail Stores, One-	Individual Independent Customers Male Female Professional Hair Salons Pet Grooming
 Aero-Propulsion Mechatronics and Energy Building 	Function 3D	Reliable DC motor for Longevity	on-One Assistance with FAQs)	• Painters
 Vendors Function 3D 3D systems- Quickparts Anaheim Automation Mouser Electronics 	 Iallahassee FL Helpful Staff FAMU-FSU COE High Quality Parts Outsourced 	 Three Colors Purple Blue Green 	 Channels Retail Stores (In Person) Online Stores (Amazon) Online Market 	

Financial Status

Engineering Shark Tank

25 Kiet Ho

1st Annual College of Engineering Technology Business Pitch Competition

Thursday, April 14, 2016 | 3:00pm-4:30pm, Engineering Room B-221

- A panel of 7 Judges
 - Faculty of FAMU-FSU COE

🗆 Alumni

Entrepreneurs

□ First Round March 24 & 25

Future Plans/Gantt Chart

26 Kiet Ho				
TITLE	Mar '16			
24 25 Create testing mechanism to rapidly test fans	26 27 28 29 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Previously Completed/In Progress Tasks	23 24 25 26 27 28 29	30 31 1 2 3 4	
Maintain Progress with Shark Tank	Create testing mechanism to rapidly test fans			
Anechoic sound test	Maintain Progress with Shark Tank			
Analysis of fan comparison sound measures Re-create housing with fan and motor in Pro-E	Anechoic sound test			
Modify Whisper with reduced number of blades	Analysis of fan comparison sound measures	ie size		
Order 3-D printed fans from 3D Systems	Re-create housing with fan and motor in Pro-E			
Develop Flow Simulation In Solidworks	Modify Whisper with reduced number of blades	low		
Test 3-D printed fans with Whisper	Order 3-D printed fans from 3D Systems	200		
Figure out balancing process of 3D printed fan	Develop Flow Simulation in Solidworks	dills		
Order new fan blade system with increased blade size	Test 3-D printed fans with Whisper	original		
Test final design in hair dryer; apply balancing	Lindate Business Model Canvas	pav	/11b, maj12b, sme13b, kth13c	
Perform parametric study of fans in SolidWorks flow	opute business model curitus		pav11b, maj12b	
Perform sound and vibration test of 3D printed fans			pav11b, maj12b	
Compare results between 3D printed fans with original				

27

Any Questions?