Design of a Less Deafening Hair Dryer

January 19, 2016

Team 6 Kiet Ho Shawn Eckert Mark Johnson Peter Van Brussel

Advisor Dr. Cattafesta

> Sponsor Dr. Devine

Instructors Dr. Gupta Dr. Shih

Presentation Overview

- Project Scope
- Hair Dryer Background
- Flow Path Options
- Current Design
 - Components
- Hair Dryer Effectiveness
- Measuring Sound Pressure
- ACC Innovation Challenge
- Gantt Chart
- References

Project Scope

- The project is to create a hand-held hair dryer which produces a sound pressure level no higher than 70 decibels, yet still effectively dries a user's hair within a reasonable amount of time
- Milestones
 - 3-D Print centrifugal housing, fan blades, and outer casing
 - Ensure electrical components function properly
 - Qualify for ACC Innovation Competition

Hair Dryer Breakdown

Heating Element Simple electromechanical device Air Moving Component Motor Motor Air Heating element moving device Controls Power Source Power Source GFCI Controls Ground Fault Circuit Interrupt

Flow Path Options

Current Design

Dimensions

Part	Length (in)	Width (in)	Height (in)	Diameter (in)
Airfoil Fan Blade	1.000	0.079	1.000	n/a
Fan Assembly	n/a	n/a	1.000	3.625
Centrifugal Housing	n/a	n/a	2.250	4.125
Inlet	n/a	n/a	n/a	2.000
Nozzle	5.560	n/a	n/a	1.700
Nozzle Exit	n/a	n/a	n/a	1.600

Assembled View of Primary Components

Secondary Components

Parts	Quantity	Currently Own
Brushed DC Motor	1	Yes (re-use)
Motor Mount	1	Yes (re-use)
Mounting Screws	7 (min)	Yes (re-use)
Heating Element	1	Yes (re-use)
Electrical Wiring	multiple	Yes (re-use)
Switches	3	Yes (re-use)
Outer Body Casing	1 (2 half pieces)	No

Parts	Quantity	Currently Own
Casing Screws	multiple	No
Sound Absorption Foam	unknown	No
Motor-to- Fan Press Fitted Fastener	1	No
Inlet/Exit Grill Covers	2	No

Quantify Hair Dryer Effectiveness

- A project goal is to not decrease the effectiveness of Hair Dryer
- Benchmark prototype against competitor designs
- Determine rate of heat produced
- Velocity or volume flow rate
 - Pitot tube or an Air flow meter
- Temperature at distance of use
 - Thermocouple or Thermometer

Measuring Sound Pressure

- Benchmark to noise output of competitors
- Determine sound based on frequency
- Calculate motor rpm

Testing Setup

Measuring Sound Pressure

Revlon 1875 – Axial Fan

- REVOR Decentional control
- Fan RPM ≈ 2350
- SPL at 1 = 76 dB(A)

Centrix Q-Zone – Centrifugal Fan

- Fan RPM ≈ 530
- SPL at 1 = 64 dB(A)

- Low speed setting of fan is roughly 70% of high setting
- Blade pass frequency magnitude comes from blades passing nearby stationary components

Blade Pass Frequency = $\frac{(RPM \text{ of } Motor) * (\# \text{ of } Blades)}{60}$

2016 ACC Innovation Challenge

1) 🕘 🔄 🍖 IJ 🐼 🍯 👾 💯 🗲 🗶 🏹

- Competition amongst ACC schools for the best innovation
- Each school sends one representative idea to Georgia Tech in April
- Judging is based off of 3 minute pitches of idea and business model
- Notified after February 1st if our team is selected to continue in FSU
- Eligibility
 - Original creators and inventors of the prototype/idea
 - Open to FSU students
 - Must be able to produce a functioning prototype by April 2016
- Cash prizes for top teams at Georgia Tech

Gantt Chart

References

- http://hebergement.u-psud.fr/projetsdephysiquestatistique/m1/projet_jt.html
- http://www.brd-nonoise.com/RequestDetails.aspx
- http://www.mne.psu.edu/lamancusa/me458/11_fan.pdf
- https://en.wikibooks.org/wiki/Acoustics/Noise_from_Cooling_Fans
- http://www.sengpielaudio.com/calculator-dba-spl.htm
- http://alumni.media.mit.edu/~dlanman/courses/decibel_meter.pdf

Ouestions?