Personal Hydroelectric Generator Team 7

Joseph Bonfardino · Galen Bowles · Brendan McCarthy · Parth Patel Shane Radosevich · Ilan Sadon · Brandon Shaw · Matthew Vila

> Faculty Advisor: Dr. Seunyong Hahn Sponsor: Dr. Michael Devine Instructor: Dr. Chiang Shih Instructor: Dr. Nikhil Gupta

Date: November 19, 2015

Background

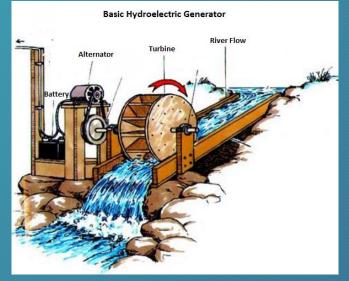


Fig. 1 - Basic Hydroelectric Generator

- Takes kinetic energy of flowing water and converts it to electrical energy
- Flowing water spins turbine which spins alternator which charges battery
- Process is more environmentally friendly than traditional methods
- Also better than building a hydroelectric dam which destroys the river below it
- Drawback is that not nearly as much electric potential is stored as in other methods
 - Team 7 Sadon

Presentation Overview

Mission

- Scope
- Need and Goal Statements
- Target Market
- Objectives
- Constraints
- HOQ

Design Method

- Decision Matrices
- Designs
- Mechanical component overview
- Electrical component overview

Future Plans and Entrepreneurial aspects

- Entrepreneurial senior design
- Business Model Canvas
- Potential Challenges
- Future Plans

Team 7 - Sadon

Project Mission

4

Problem Scope

This project will consist of creating a marketable power generation system that not only harnesses power from flowing water but is also portable. These generators will create a realistic means of providing sustainable power to anywhere there is flowing water.

Needs Statement & Goal Statement

• Need Statement:

"People in remote locations do not have access to electricity for powering their electrical devices."

6

• Goal Statement:

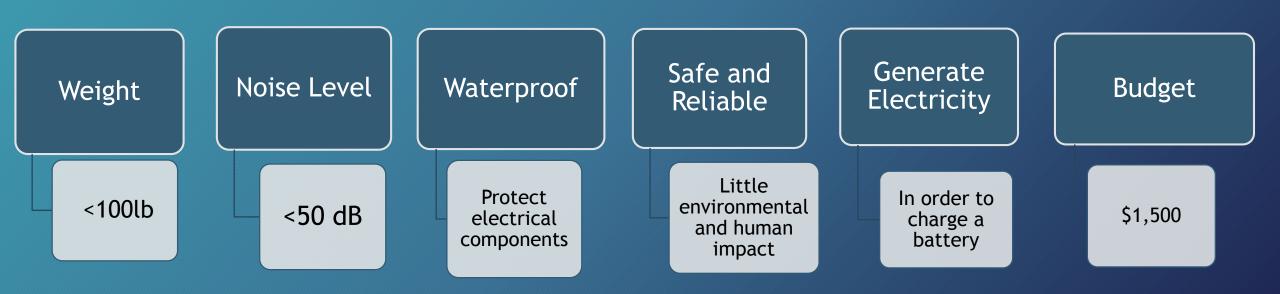
"Develop a portable device that transforms organic kinetic energy into usable electricity."

Target Market

Objectives

8

• Produce enough power to satisfy the need our target consumers.


- Supplemental emergency power generation.
- Environmentally conscious recreational camper.
- Rurally indigenous communities.
- Minimize weight to ensure portability
 - Modular design
- Environmentally friendly

0

• Fast and simple assembly and disassembly

Project Constraints

9

River Flow Characteristics

10

The velocity used for all calculations concerning our design will be based off the average of these 5 velocities located in different geological coordinates around our initial target market. V = 3.75 ft/s

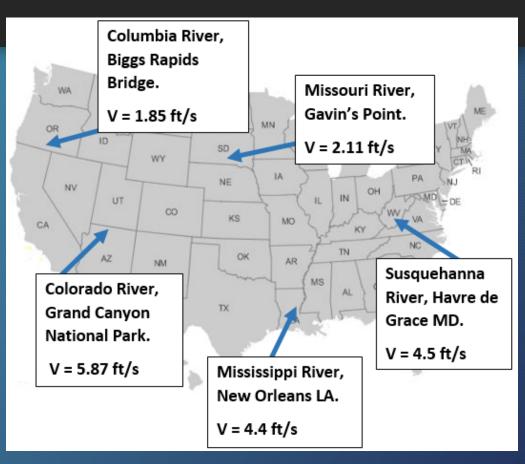


Fig. 2 - River Flow Across the Country

Power of Water

• The amount of power available in flowing water is defined in the following equation:

 $P = 1/2\xi \rho A v^{3}$

- Turbine efficiency(ξ) is a measure of how much energy is transferred from the water to the blades
 - 100% efficiency means that all of the water's energy was transferred to the turbine (i.e. water velocity is zero after impacting turbine)
 - Actual values range from 10% 30%

Radius of Turbine (m)	Power (10% Eff) (Watts)	Power (20% Eff) (Watts)	Power (30% Eff) (Watts)
0.10	2.344	4.688	7.032
0.20	9.377	18.753	28.130
0.30	21.097	42.194	63.292
0.40	37.506	75.012	112.518
0.50	58.603	117.207	175.810
0.60	84.389	168.777	253.166
0.70	114.862	229.725	344.587
0.80	150.024	300.049	450.073
0.90	189.875	379.749	569.624
1.00	234.413	468.826	703.239

Table 1 - Power of Flowing Water

Customer Discovery Survey

12

- If the generator could sustain all your lighting needs, run a small refrigerator, or power any TV, how much would you spend?
- Where would you mainly use this item?
- What is the most important from the following: Power Output, Price, Durability or Size?
- How likely are you to buy a hydroelectric generator if it meets your needs?

Survey Results

If a generator could sustain all your lighting needs, run a small refrigerator, or power any TV, how much would you spend?	5	5	15	6	
	Camping	Hunting	Cabin	Fishing Trip	
Where would you mainly use this item?	13	16	4	10	
	Power Output	Price	Durability	Size	
What is the most important from the following: Power Output, Price, Durability or Size?	8	5	10	8	
	Would buy	Might buy it	Wouldn't buy	l don't know	
How likely are you to buy a hydroelectric generator if it meets your needs?	14	5	4	8	

• \$550 to \$750

- Hunting
- Durability
- Would Buy

Table 2 - Survey Results

House of Quality

		ate of Power Generation	Cost	Weight of Device	Lined Profile	wer Output Efficiency	Mechanical Complexity	er Friendly	
Engineering Characteristics →		Rate Ger		/eig	Stream	Power Effici	žΰ	User	Solling Doints
Customer requirements	Importance to Customer			8	Stro				Selling Points
Functionality	5	10	5	2	9	10	5	4	225
Easy to Operate	3						6	10	64
Light Weight	4	7	7	10	4		3	8	117
Compact	4	6	2	8	6	2	6	8	114
Price	2	4	10	5		6	8	3	144
Durability	3		7	3	1	5	6	2	120
Aesthetically pleasing	1		4		8				48
Maintenance	3		3	5	2		5	8	92
Importance	Importance Weighting		115	116	102	85	128	150	

Fig. 3 - House of Quality Team 7 - Bowles

Design Overview

15

Decision Matrices

Turbine (Hydrokinetic)

Fig. 4

Criteria	Importance	Francis	Kaplan	Hydrokinetic
	Rating			
Weight	3	2	3	5
Cost	2	3	2	3
Manufacturability	3	2	2	4
Durability	4	2	3	3
Efficiency	4	3	3	5
Total		38	43	<mark>65</mark>

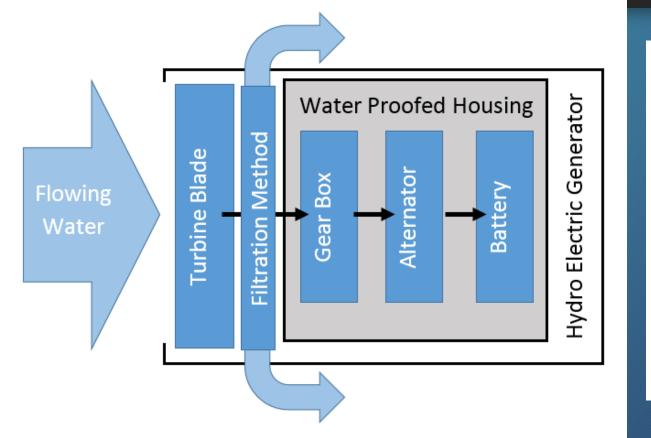
Housing (PVC Duct)

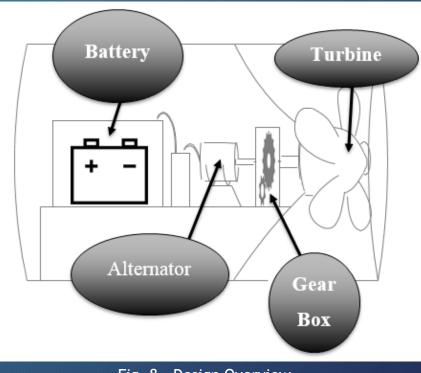
Criteria	Importance	Carbon Fiber	Polycarbonate	PVC Duct
	Rating			
Weight	4	4	4	3
Cost	3	1	2	4
Durability	2	4	4	3
Manufacturability	4	2	2	4
Total		35	38	<mark>46</mark>

Fig. 5 - Housing Decision Matrix

- Turbine Decision Matrix Alternator (AC)

Criteria	Importance Rating	DC Generator	AC Alternator
Weight	3	2	3
Cost	2	3	3
Safety	3	3	3
Durability	3	2	4
Efficiency	4	2	3
Total		35	<mark>48</mark>


Fig. 6 - Alternator Decision Matrix


Conceptual Design

17

- Turbine Selection:
 - Hydrokinetic Turbine
- Battery Selection:
 - Sold separately
- Alternator Selection:
 - Brushless permanent magnet alternator (PMA)
- Anchoring Selection:
 - Land-based cantilever system with possible upstream tension anchor point

Initial Design

18

Fig. 8 - Design Overview

Fig. 7 - Design Flowchart

Revised Design

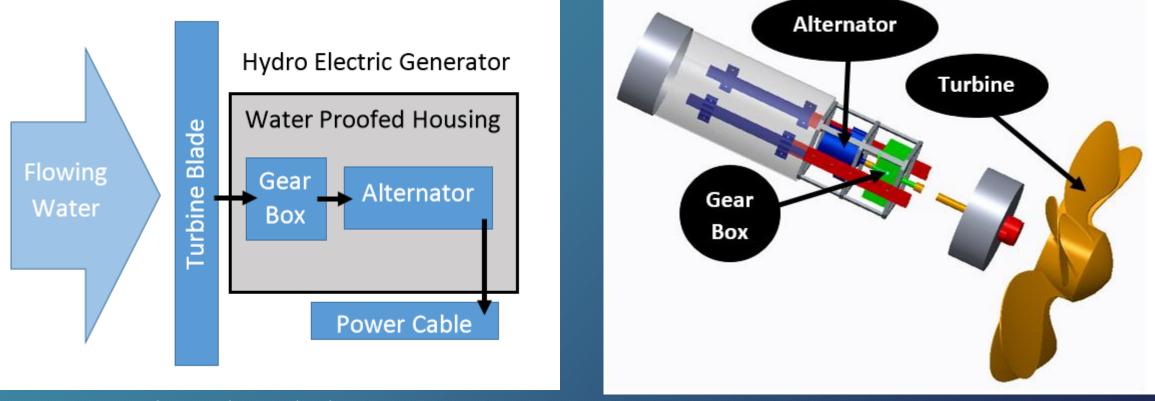


Fig. 9 - Revised Design Flowchart

Fig. 10 - Revised Design Overview

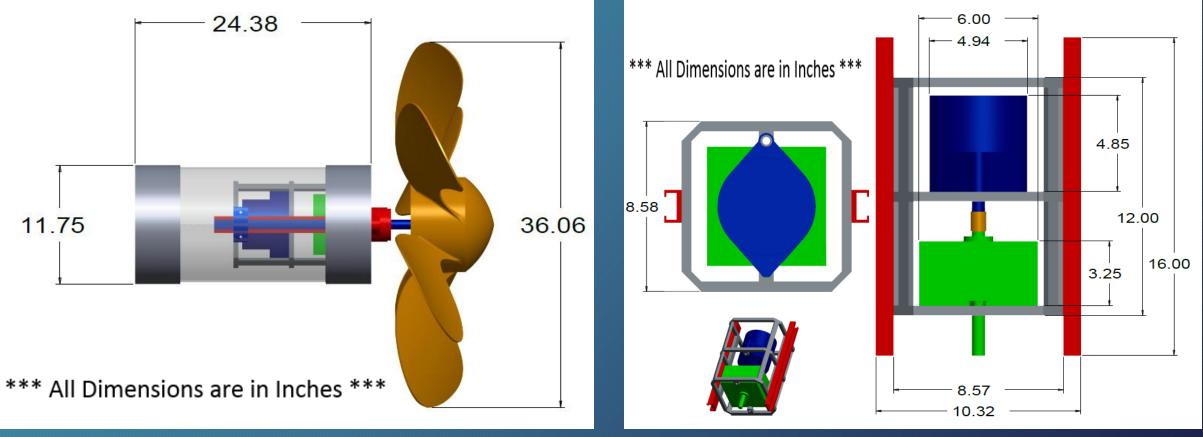
Detailed CAD Schematic

-Back Cap Housing Alternator (blue) Housing Cage Linear Motion Guides & Rails Waterproof Gearbox Bearing (green) Front Cap Turbine Shaft Hydrokinetic Turbine

20

Fig. 11 - Hydroelectric Generator CAD Team 7 - McCarthy

Detailed CAD Schematic



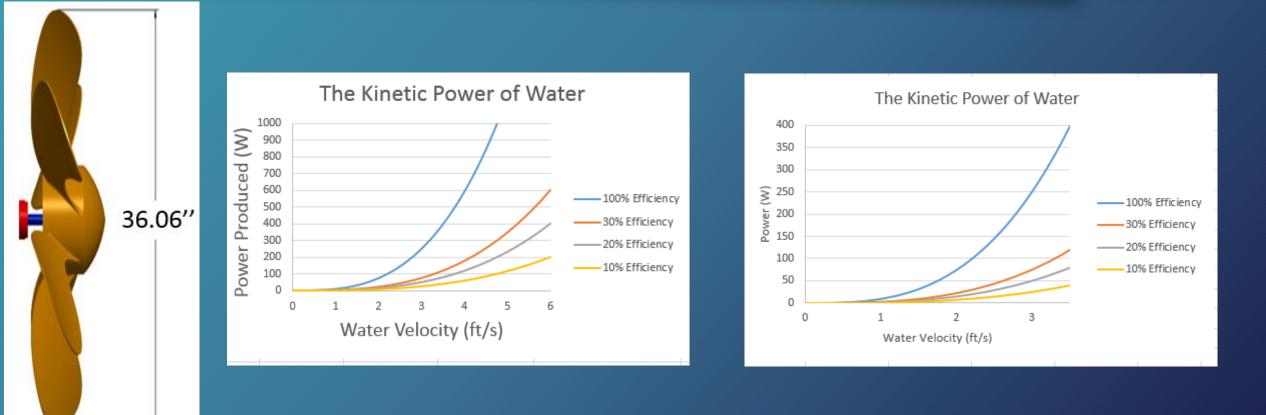

Fig. 12 - Hydroelectric Generator CAD with Dimensions Side - View

Fig. 13 - Hydroelectric Generator Cross-Sectional View with Dimensions

21

Hydrokinetic Turbine

22

Gearbox/Anchoring System

- Cannot move forward with gearbox design until turbine selection is complete. Will use a metal reduction gearbox to increase RPM of a shaft and decrease torque.
- Anchoring system planned to be cantilever design attached through spikes to shore.

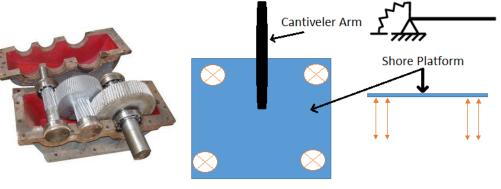


Figure 16 - Gearbox and Anchoring System Possibilities

Housing

Housing	
Material	PVC Duct
Outer Diameter	11.375"
Inner Diameter	11"
Wall Thickness	0.187"
Length	2'
Weight/Foot	3.944 lbs

Table 3 - PVC Pipe Attributes

Figure 17 - PVC Piping

Ends Caps	
Material	PVC Duct
Outer Diameter	11.75"
Inner Diameter	11.375"
Wall Thickness	0.187"

Table 4 - PVC End-cap Attributes

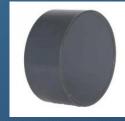


Figure 18 - PVC End Cap Team 7 - McCarthy

24

Rail System: No specific information because one has not been selected

Figure 19 - Rail System

Water Proofing

25

Waterproof Spherical Flange Bearing

- Lubrication using grease inserted by a zerc fitting
- Heat Tolerance ranges from -22 to +212 °F
- Designed for a 1" shaft diameter

Rubber Sleeve with Screw Bands

- Rubber sleeve allows for better contact each band with the PVC duct
- The band can screw tight enough to secure the cap to the housing tube for a perfect seal

Figure 20 - Spherical Flange Bearing

Figure 21 - Rubber Sleeve

Electronic Components - Alternator

Figure 22 - DC - 540 PMA

Wind Blue Power	DC - 540 PMA
Voltage Production	14V @ 250rpm
Amperage Production	5A @ 250rpm
Charge Time to 500W	7 Hours @ 250rpm
Startup Torque no Load	0.17 Nm
Diameter	<7 inches
Depth	6.5 inches
Wire Gauge	10-12 AWG (0-20)A
Weight	11 lbs.
Price	\$249.00

Figure 23 - Alternator Specifications

Team 7 - Sadon

Figure 24 - Production Based on RPM (Based on OC and SC)

Electronic Components - Charge Controller

Figure 25 - 12 Volt 25 Amp Charge Controller From Wind Blue Power

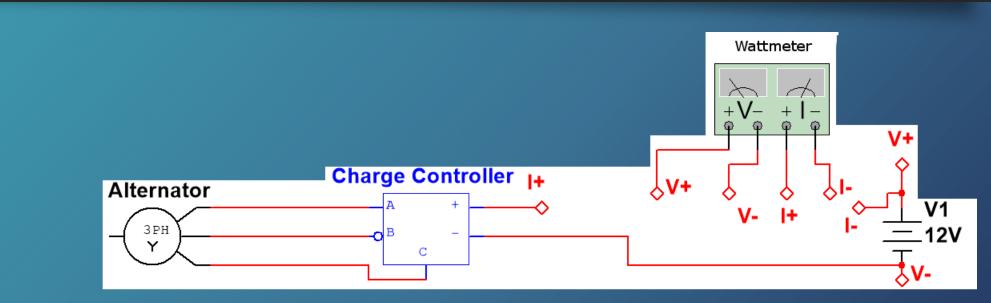
- Takes in 3 phase from the alternator
- Beneficial for longer distances
- Includes heat sink fins to dissipate heat
- Simple to set up to battery
- Built in switch to prevent overcharging of battery
- Switch enables automatic generator braking
- Price \$44.00

Electronic Components - Watt Meter

Figure 26 - Watt Meter Provided by Wind Blue Power

• Wattmeter allows end user to see all stats in one place

28


• Simple to hook up

• Will be placed at the battery terminals for easy access

• Measure charge(ah), power(w), current(A), and voltage(V)

• Price - \$24.00

Electronic Components - Circuit Schematic



29

Figure 27 - Circuit Schematic

Team 7 - Sadon

Future Progress and Entrepreneurial Aspects

30

Team 7 - Radosevich

Entrepreneurial Senior Design

- Requires us to evaluate the business potential and marketability of our product
- InNolevation Challenge \$10,000 for 1st place & Domi Venture entry
 - Business Model Canvas
 - Stage 1 Value Proposition
 - Stage 2 Rest of canvas except for financials
 - Stage 3 (Nov 20) work with a representative to improve the canvas

Team 7 - Radosevich

The Business Model Canvas

Key Partners	Key Activities	Value Proposition	Customer Relationships	Customer Segments
Payment service	R&D –improve on	 Provide a constant, 	 Dedicated sales for 	 Developing
such as paypal	hydroelectric	clean energy source	large purchase	countries –
-	generator design	with enough power	accounts	specifically villages
Distribution		to supply a small		and homes near
partners –USPS,	 effective sales team 	home or cabin with	 Support staff 	bodies of water
FedEx, etc.		electricity		
-	 establish premium 		Automation (where	 Humanitarian
 Suppliers – 	models with added	Utilize the power of	possible)	organizations
generators,	features	flowing water in		
alternators, and		order to generate	 Periodic newsletter 	 Outdoorsmen –
turbine components	<u>Key Resources</u>	electricity	<u>Channels</u>	riverside camp sites
-	 Brand name 		 Global sales and 	
FSU – (senior		 Significantly quieter 	support team	 Military
design) supplies	 Product design 	than its gasoline		
initial funding for		counterpart	Online website with	
the project	 Sales and support 		product information	
-	teams	 Portability 		
Kickstarter – entry			 Social media 	
level fundraising	 Sales of parts and 		accounts	
	expanded features			
Grants from				
competitions such				
as InNolevation				
Challenge				

Team or Company Name: Personal Hydroelectric Generator

Date:

11/18/2015

X Primary Canvas

Alternative Canvas

32

Figure 28 - Business Model Canvas

Potential Challenges

- Heat dispersion inside the housing
- Water contacting electrical components
- Achieving proper gear ratio for desired output
- Submerging the apparatus to desired depth
- Anchoring the system to withstand the necessary forces
- Keeping the design compact and easy to assemble

Team 7 - Radosevich

Gantt Chart

		13, '15		Sep 27	, '15		Oct 1			Oct 2	5, '15		N	ov 8, '1			Nov	22, '15		Dec
Task Name 👻	Duration 👻	T S	W	S	T	M	FT	S	W	S	Т	М	F	Т	S	W	S	Т	М	F
General Research	15 days			-																
Initial Website Desig	47 days																			ġ.
Develop Conceptual	10 days							6												
▲ Subsection Compone	17 days				9			-												
Turbine Selection	10 days																			
Generator Selecti	10 days																			
Charging System S	10 days				I															
Mounting System	10 days																			
Housing Selection	10 days																			
Finalize Premlinary D	8 days																			
Design Analysis	13 days									- 9					-					
Electrical Analysis	13 days																			
Mechanical Analy	13 days																			
Thermodynamic A	13 days																			
Modeling and Sirr	13 days									, i										
Turbine Flow Si	13 days																			
CAD Drawings (13 days																			
Order Components	14 days														i					i i
																				-

Figure 29 - Gantt Chart

Team 7 - Radosevich

34

Future Plans

35

- Finalize Following Component Designs and Selections:
 - Turbine Blade
 - Anchoring System
 - Gear Box
 - Electrical Displays
- Complete Commercialization business plan and next stages of InNOLEvation challenge
- Investigate measures to protect turbine and turbine user during operation
- Test alternator for heat dissipation issues
- Order Components
- Machine and construct base and mounting for components in housing

Team 7 - Radosevich

References

- [1] 1,100-Watt Gasoline Powered Portable Generator. (n.d.). Retrieved from The HomeDepot: http://www.homedepot.com/p/PowerStroke-1-100-Watt-Gasoline-Powered-Portable-Generator-PS901200/204617068
- [2] 1,150-Watt Gasoline Powered Portable Generator with Briggs & Stratton Engine. (n.d.). Retrieved from The HomeDepot: http://www.homedepot.com/p/PowerBoss-1-150-Watt-Gasoline-Powered-Portable-Generator-with-Briggs-Stratton-Engine-30627/205416464
- [3] 1,200/1,500-Watt Recoil Start Gasoline Powered Portable Generator. (n.d.). Retrieved from The HomeDepot: http://www.homedepot.com/p/Champion-Power-Equipment-1-200-1-500-Watt-Recoil-Start-Gasoline-Powered-Portable-Generator-42436/203791696
- [4] 1,200-Watt 2 Stroke Gasoline Powered Portable Generator. (n.d.). Retrieved from The HomeDepot: http://www.homedepot.com/p/All-Power-1-200-Watt-2-Stroke-Gasoline-Powered-Portable-Generator-APG3004D/202757598
- [5] (n.d.). Retrieved from Geography Fieldwork: http://www.geography-fieldwork.org/rivers/river-variables.aspx
- [6] 5.1 Stream Flow. (n.d.). Retrieved from United States Environmental Agency: http://water.epa.gov/type/rsl/monitoring/vms51.cfm
- [7] USGS Water Data for the Nation. (n.d.). Retrieved from USGS: http://waterdata.usgs.gov/nwis
- [8] Turbines. (n.d.). Retrieved from indiamart: http://www.indiamart.com/flovel-energy/turbines.html
- [9] Micro Hydro. (n.d.). Retrieved from Hydrogen Appliances: http://www.hydrogenappliances.com/hydro.html
- [10] Turgo Turbine. (n.d.). Retrieved from Encyclopedia of Alternative Energy: http://www.daviddarling.info/encyclopedia/T/AE_Turgo_turbine.html

References

- [11] Difference Between Kaplan and Francis Turbine. (2013, 02 23). Retrieved from DifferenceBetween.com: http://www.differencebetween.com/difference-between-kaplan-and-vs-francis-turbine/
- [12] Francis Turbines. (2015, 09 12). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Francis_turbine
- [13] "Kaplan Turbine A Mammoth in Hydroelectric Power Generation." ~ *Learn Engineering*. N.p., n.d. Web. 18 Oct. 2015. : http://www.learnengineering.org/2013/08/kaplan-turbine-hodroelectric-power-gneration.html
- [14] Ingram, Grant. "Very Simple Kaplan Turbine Design." (n.d.): n. pag. *School of Engineering, Durham University*. Web. 18 Oct. 2015. : http://community.dur.ac.uk/g.l.ingram/download/kaplandesign.pdf
- [15] "Kaplan Turbines Renewables First." *Renewables First*. N.p., n.d. Web. 18 Oct. 2015. : https://www.renewablesfirst.co.uk/hydropower/hydropower-learning-centre/kaplan-turbines/
- [16] Alternator. (2015, 09 30). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Alternator
- [17] MacGregor, R. (2012, 09 06). The Difference Between Car and Boat Batteries. Retrieved from The Globe and Mail: http://www.theglobeandmail.com/globe-drive/culture/commuting/the-difference-between-car-andboat-batteries/article1372050/
- [18] Burden, T. (n.d.). Selecting the Right Anchor. Retrieved from West Marine: http://www.westmarine.com/WestAdvisor/Selecting-The-Right-Anchor

38

QUESTIONS?