Personal Hydroelectric Generator Team 7

Design Review I

Joseph Bonfardino · Galen Bowles · Brendan McCarthy · Parth Patel Shane Radosevich · Ilan Sadon · Brandon Shaw · Matthew Vila

> Faculty Advisor: Dr. Seunyong Hahn Sponsor: Dr. Michael Devine Instructor: Dr. Nikhil Gupta Instructor: Dr. Chiang Shih

> > Date: February 18, 2016

Presentation Overview

Project Background

- Project Definition
- Mechanical Overview
- Electrical Overview

Current State

- Testing Results
- Component Status Update
- Financial Update

Spring 2016 Forecast

- Gantt Chart
- Experimental Forecast
- Entrepreneurial Forecast
- Design / Assembly Forecast

Presentation Overview

Project Background

- Project Definition
- Mechanical Overview
- Electrical Overview

Current State

- Testing Results
- Component Status Update
- Financial Update

Spring 2016 Forecast

- Gantt Chart
- Experimental Forecast
- Entrepreneurial Forecast
- Design / Assembly Forecast

Background

Fig. 1 – Basic Hydroelectric Generator

- Takes kinetic energy of flowing water and converts it to electrical energy
- Flowing water spins turbine which spins alternator to charge a battery
- Process is more environmentally friendly than traditional methods
- Better approach than building a hydroelectric dam which destroys the river below it
- Drawback is that not nearly as much electric potential is stored as in other methods

Problem Scope

This project will consist of creating a marketable power generation system that will harnesses power from flowing water as well as remain portable. This generator will create affordable and clean power in locations with a reasonable amount of flowing water.

Needs Statement & Goal Statement

Need Statement:

"People in remote locations do not have access to electricity for powering their electrical devices."

• Goal Statement:

"Develop a portable device that transforms organic kinetic energy into usable electricity."

Target Market

Team 7 - Joseph

Objectives

Produce enough power to satisfy the need of our target consumers.

- Supplemental emergency power generation
- Environmentally conscious recreational camper
- Companies in rurally indigenous locations
- Minimize weight to ensure portability
 - Modular design

Fast and simple assembly and disassembly

Project Constraints

Current Design

Detailed CAD Schematic

Detailed CAD Schematic

Fig. 6– Hydroelectric Generator Cross-Sectional View with Dimensions

Team 7 - Ilan

Electronic Components – Overview

- 3 Phase DC-540 Alternator from Wind Blue Power
- 12 V / 25 A Charge Controller from Wind Blue Power
- LCD Display Wattmeter from Wind Blue Power

Table 1: Specifications of DC-540

Wind Blue Power	DC – 540 PMA
Voltage Production	14V @ 250rpm
Amperage Production	5A @ 250rpm
Energy Production of 1764kJ	7 Hours @ 250rpm

Electronic Components – Circuit Schematic

Fig. 7– Circuit Schematic

Electrical Components - Wiring

Fig. 8 – Vetco Extra Large Series 3 Pin Male Inline Waterproof Connector

Specifications							
Number of Pins	3						
Voltage Rating	300V						
Rated(40°C)	20 A						
Max Wire Gauge	12 AWG						
Operating Temperature	-45°C ~ 105°C						

Presentation Overview

Project Background

- Project Definition
- Mechanical Overview
- Electrical Overview

Current State

- Testing Results
- Component Status Update
- Financial Update

Spring 2016 Forecast

- Gantt Chart
- Experimental Forecast
- Entrepreneurial Forecast
- Design / Assembly Forecast

Waterproof Testing and Results

Experimental Procedure #1:

- Clean edges of the PVC housing and attach end caps
- Submerge the apparatus into cooler full of water for 5 minutes
- Remove housing and check for introduction of water inside

Results:

Housing was ≈75% full of water after 5 minutes

Waterproof Testing and Results

- Experimental Procedure #2:
 - Dry end caps from previous experiment
 - Fill end caps full of water on inside
 - Observe if water escapes through the crease of the cap

Results:

End caps leaked through creases

Waterproof Testing and Results

• Conclusion:

- Marine grade epoxy was added to creases
- Additional methods of sealant will be used to make waterproof
- A layer of PVA sponge will be added to the bottom of the housing as a fail safe for water leaks

Fig. 10 – PVA sponge

Team 7 - Brandon

Heat Dispersion Testing and Results

• Experimental Procedure:

- Place the alternator within housing
- Attach electric drill with socket and extension to the alternator's input shaft
- Spin the drill at desired voltages to and take temperature with a temperature gun every 30 seconds for five minutes to observe temperature change

Heat Dispersion Testing and Results

Results:

- Conclusion:
 - Heat should <u>not</u> be a problem
 - The heat had a max plateau of 76°F at 40V
 - The apparatus will be operating at 12V

Component Status Update

Component	Delivered	Ordered	Designed	Needs to be Addressed
DC 540 Alternator	Х			
Charge Controller	Х			
Watt Meter	Х			
5' of 11" PVC Pipe	Х			
PVC End-Caps	Х			
Water-Proof Bearings		Х		
Shaft / Shaft Couplings		Х		
Gearbox Set				X
Anchoring System				X
Turbine Blade	Х			
Internal Housing			Х	

22

Allocated Resources (Total Budget – \$1500)

DC 540 Alternator (\$239) 12V/25A Charge Controller (\$44) 60V/100A Watt Meter (\$24) **5** of 11" PVC Pipe (\$170) External PVC End-Caps (\$224) Waterproof Bearing (\$101) Turbine Blade (\$259) Remaining Resources (\$418.24)

Team 7 - Brandon

Presentation Overview

Project Background

- Project Definition
- Mechanical Overview
- Electrical Overview
- Entrepreneurial Overview

Current State

- Testing Results
- Component Status Update
- Financial Update

Spring 2016 Forecast

- Gantt Chart
- Experimental Forecast
- Entrepreneurial Forecast
- Design / Assembly Forecast

Potential Challenges

- Water contacting electrical components
- Achieving proper gear ratio for desired output
- Submerging the apparatus to desired depth
- Anchoring the system to withstand the necessary forces

Current Agenda

- Finishing assembling internal housing for alternator
- Testing of our device
 - RPM vs power output
 - Buoyancy and stability underwater
- Finalize Following Component Designs and Selections:
 - Anchoring System
 - Gear Box
- Investigate measures to protect turbine and user during operation

Design/Assembly Forecast

- Next step would be to put the system together and begin testing
- Device will be tested in the Wakulla River at Shadeville road at full functionality
- Readings from the wattmeter will be used to gather data
- Gathered data will be used to finalize other aspects of the design

Fig. 11 - Wakulla River

Gear Box

- Incomplete force analysis for water flowing over turbine blade
- Will be based upon data gathered from lone turbine testing
- The gearbox will increase the RPM output from the turbine to the necessary input level for the alternator
- Calculations will be performed in the coming week based of the heat dispersion test and average turbine speeds in order to determine the proper gear ratio

Fig. 12 - Gearbox

Scheduling

				n 3, '1	.6		Jan 1	7, '16		Jar	n 31, '1	16		Feb 1	4, '16		Fe	eb 28	, '16		Mar
Task Name 👻	Duration 🚽	Start 👻	Finish 🚽	Т	S	W	S	Т	M	F	Т	S	W	S	Т	м	F	Т	S	W	S
Order Remaining	5 days	Fri 1/8/16	Thu 1/14/16			-	1														
Components																					
Design Analysis	17 days	Fri 1/8/16	Mon 2/1/16	6)										
Design Internal Housing	3 days	Fri 1/8/16	Tue 1/12/16	'																	
Design GearBox	15 days	Tue 1/12/16	Mon 2/1/16																		
Manufacturing	14 days	Mon 1/18/16	Thu 2/4/16			, c	۲				j										
Manufacture Internal Housing	14 days	Mon 1/18/16	Thu 2/4/16																		
Manufacture/Orde Gearbox	14 days	Mon 1/18/16	Thu 2/4/16																		
Manufacture Anchoring	6 days	Thu 1/28/16	Thu 2/4/16																		
Manufacture/Orde Turbine	14 days	Mon 1/18/16	Thu 2/4/16																		
▲ Testing	26 days	Mon 1/25/16	Mon 2/29/16					9									-	I)			
Heat Dispersion	6 days	Mon 1/25/16	Mon 2/1/16														П	_			
Waterproofing	6 days	Mon 2/1/16	Mon 2/8/16																		
Electrical Output	6 days	Mon 2/8/16	Mon 2/15/16																		
Turbine Blade	6 days	Mon 2/15/16	Mon 2/22/16																		
Anchoring	6 days	Mon 2/22/16	Mon 2/29/16												1						
Assembly	10 days	Mon 2/29/16	Fri 3/11/16														¶∎ ∎				
Outside Housing	5 days	Mon 2/29/16	Fri 3/4/16																		
Internal Housing	5 days	Mon 2/29/16	Fri 3/4/16																		
Anchoring	7 days	Thu 3/3/16	Fri 3/11/16																		
Electronics/Wiring	7 days	Thu 3/3/16	Fri 3/11/16																		
Consumer Instruction Manual	12 days	Mon 2/29/16	Tue 3/15/16																		

ACC Innovation Overview

• April 5 – 6, 2016

•

<u>Prizes</u>

• 15 universities competing

1st Place Award \$15,000

2nd Place Award \$10,000

- Each nominating one undergraduate student
- Held at Georgia Tech this year
 - Over a 2 day period students will pitch their innovations to a panel of judges
- Open to students without revenue or capital in excess of \$100,000 and to those who haven't competed before

People's Choice Award \$5,000

* There may also be opportunities for sponsor prizes, and venture funding. All participants are recognized at the awards ceremony, and on the event website.

ACC Innovation Schedule

- Day 1 Preliminary "quick pitch" round in front of a panel of judges (3 min. pitch followed by 5 min. of Q&A)
 - 6 finalists will be selected to continue

 Day 2 - Finalists pitch to a panel of judges in front of a live Audience as well as broadcast on PBS and streamed online (3 min. pitch and 3 min. of Q&A)

Competition for Spot in ACC Challenge

• Step 1: Submit invention and beginning stages of business plan online for review

- ***Made top 11 out of 80 participants
- Step 2: Present invention, beginning stages of business plan, and current status of prototype followed by Q & A
 - ***Made top 3 out of 11
- Step 3: TBA, final choice of competitor

Team or Company Name: Personal Hydroelectric Generator

The Business Model Canvas

X Primary Canvas

Alternative Canvas

Key Partners	Key Activities	Value Proposition	Customer Relationships	Customer Segments
 Payment service such as paypal 	 R&D –improve on hydroelectric generator design 	 Provide a constant, clean energy source with enough power 	 Dedicated sales for large purchase accounts 	 Developing countries – specifically villages
 Distribution partners –USPS, FedEx, etc. 	effective sales team	to supply a small home or cabin with electricity	Support staff	and homes near bodies of water
 Suppliers – generators, 	 establish premium models with added features 	 Utilize the power of flowing water in 	 Automation (where possible) 	 Humanitarian organizations
alternators, and turbine components	<u>Key Resources</u> • Brand name	order to generate electricity	 Periodic newsletter <u>Channels</u> Global sales and 	 Outdoorsmen – riverside camp sites
 FSU – (senior design) supplies initial funding for the project 	 Product design Sales and support teams 	 Significantly quieter than its gasoline counterpart Portability 	 support team Online website with product information 	• Military
 Kickstarter – entry level fundraising 	 Sales of parts and expanded features 	,	 Social media accounts 	
 Grants from competitions such as InNolevation Challenge 				

Fig. 14 – Business Model Canvas

QUESTIONS?