Personal Hydroelectric Generator Team 7

Joseph Bonfardino · Galen Bowles · Brendan McCarthy · Parth Patel Shane Radosevich · Ilan Sadon · Brandon Shaw · Matthew Vila

> Faculty Advisor: Dr. Seunyong Hahn Sponsor: Dr. Michael Devine Instructor: Dr. Chiang Shih Instructor: Dr. Nikhil Gupta

Date: January 21, 2016

Background

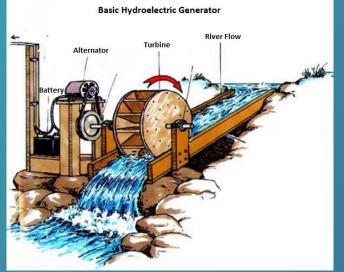


Fig. 1 - Basic Hydroelectric Generator

- Takes kinetic energy of flowing water and converts it to electrical energy
- Flowing water spins turbine which spins alternator which charges battery
- Process is more environmentally friendly than traditional methods
- Also better than building a hydroelectric dam which destroys the river below it
- Drawback is that not nearly as much electric potential is stored as in other methods

Presentation Overview

Fall 2015 Recap

- Project Definition
- Mechanical Overview
- Electrical Overview
- Entrepreneurial Overview

Current State

- Component Status Update
- Financial Update

Spring 2016 Forecast

- Gantt Chart
- Experimental Forecast
- Entrepreneurial Forecast
- Design / Assembly Forecast

Presentation Overview

Fall 2015 Recap

- Project Definition
- Mechanical Overview
- Electrical Overview
- Entrepreneurial Overview

Current State

- Component Status Update
- Financial Update

Spring 2016 Forecast

- Gantt Chart
- Experimental Forecast
- Entrepreneurial Forecast
- Design / Assembly Forecast

Project Definition

- Problem Scope
- Need Statement
- Goal Statement
- Target Market
- Objectives
- Project Constraints
- HOQ Development

Problem Scope

This project will consist of creating a marketable power generation system that not only harnesses power from flowing water but is also portable. These generators will create a realistic means of providing sustainable power to anywhere there is a reasonable amount of flowing water.

Team 7 - Bowles

Needs Statement & Goal Statement

• Need Statement:

"People in remote locations do not have access to electricity for powering their electrical devices."

• Goal Statement:

"Develop a portable device that transforms organic kinetic energy into usable electricity."

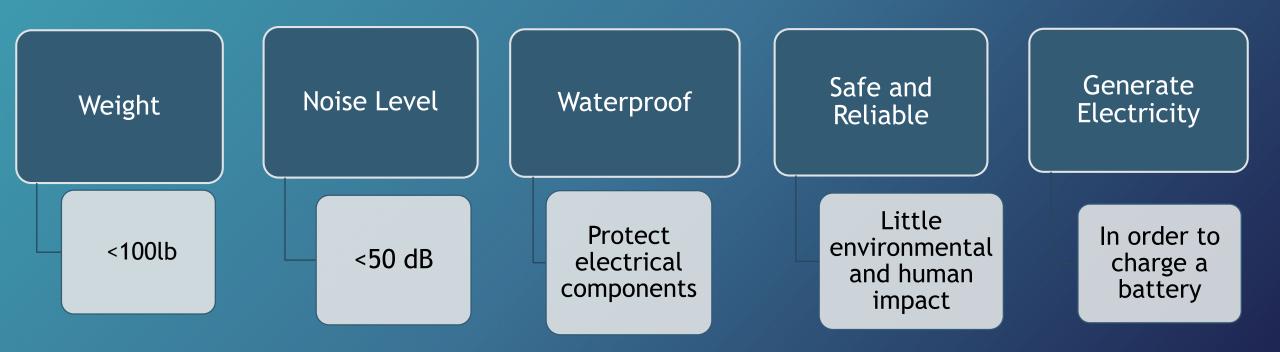
Target Market

Team 7 - Bowles

Objectives

• Produce enough power to satisfy the need of our target consumers.

9


- Supplemental emergency power generation.
- Environmentally conscious recreational camper.
- Companies in rurally indigenous locations.
- Minimize weight to ensure portability
 - Modular design
- Environmentally friendly

0

• Fast and simple assembly and disassembly

Project Constraints

10

Team 7 - Bowles

Customer Discovery Survey

11

- If the generator could sustain all your lighting needs, run a small refrigerator, or power any TV, how much would you spend?
- Where would you mainly use this item?
- What is the most important from the following: Power Output, Price, Durability or Size?
- How likely are you to buy a hydroelectric generator if it meets your needs?

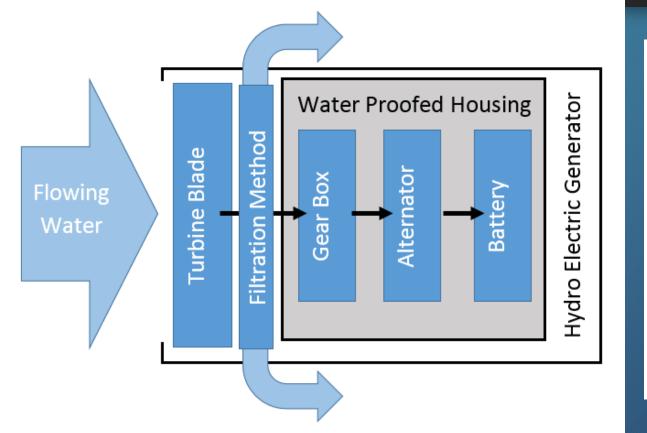
Survey Results

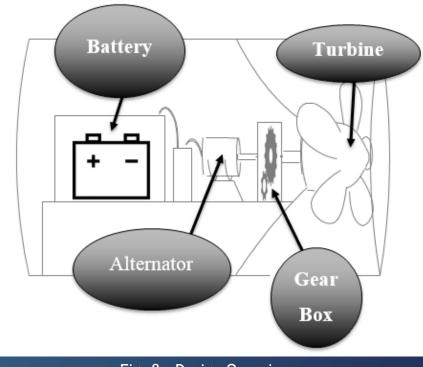
5	5	15	6
Camping	Hunting	Cabin	Fishing Trip
13	16	4	10
Power Output	Price	Durability	Size
8	5	10	8
Would buy	Might buy it	Wouldn't buy	l don't know
14	5	4	8
	Camping 13 Power Output 8 Would buy	CampingHunting1316Power OutputPrice85Would buyMight buy it	CampingHuntingCabin13164Power OutputPriceDurability8510Would buyMight buy itWouldn't buy

• \$550 to \$750

- Hunting
- Durability
- Would Buy

Table 2 - Survey Results


Team 7 - Bowles


House of Quality

		ate of Power Generation	Cost	Weight of Device	Stream Lined Profile	wer Output Efficiency	Mechanical Complexity	er Friendly	
Engineering Characteristics ->		Rate Ger		/eig	eam	Power Effici	žΰ	User	Colling Doints
Customer requirements	Importance to Customer			8	Stro				Selling Points
Functionality	5	10	5	2	9	10	5	4	225
Easy to Operate	3						6	10	64
Light Weight	4	7	7	10	4		3	8	117
Compact	4	6	2	8	6	2	6	8	114
Price	2	4	10	5		6	8	3	144
Durability	3		7	3	1	5	6	2	120
Aesthetically pleasing	1		4		8				48
Maintenance	3		3	5	2		5	8	92
Importance Weighting		110	115	116	102	85	128	150	

Fig. 3 - House of Quality Team 7 - Bowles

Initial Design

14

Fig. 8 - Design Overview

Fig. 7 - Design Flowchart

Revised Design

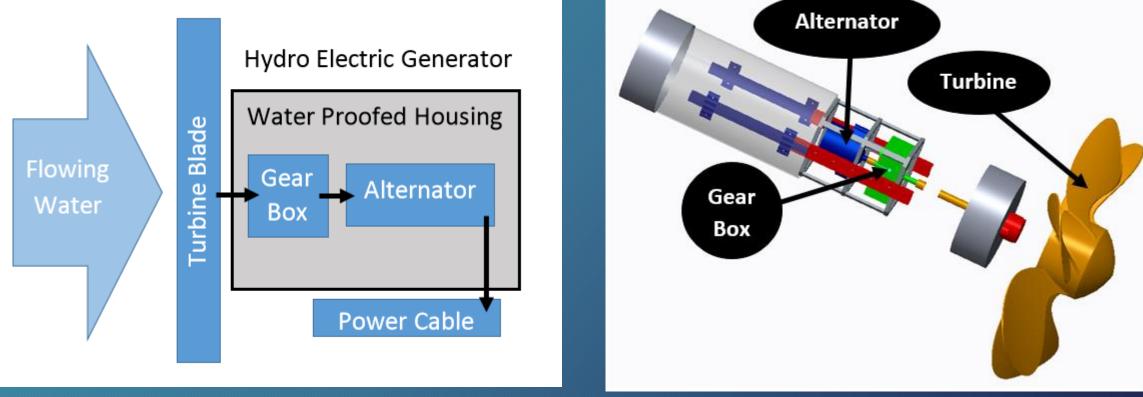
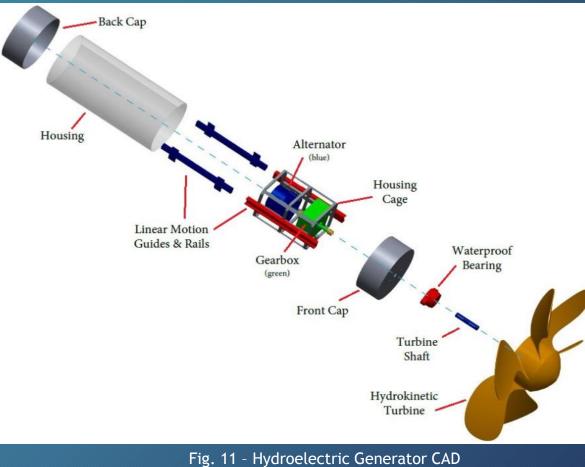



Fig. 9 - Revised Design Flowchart

Fig. 10 - Revised Design Overview

Detailed CAD Schematic

16

Detailed CAD Schematic



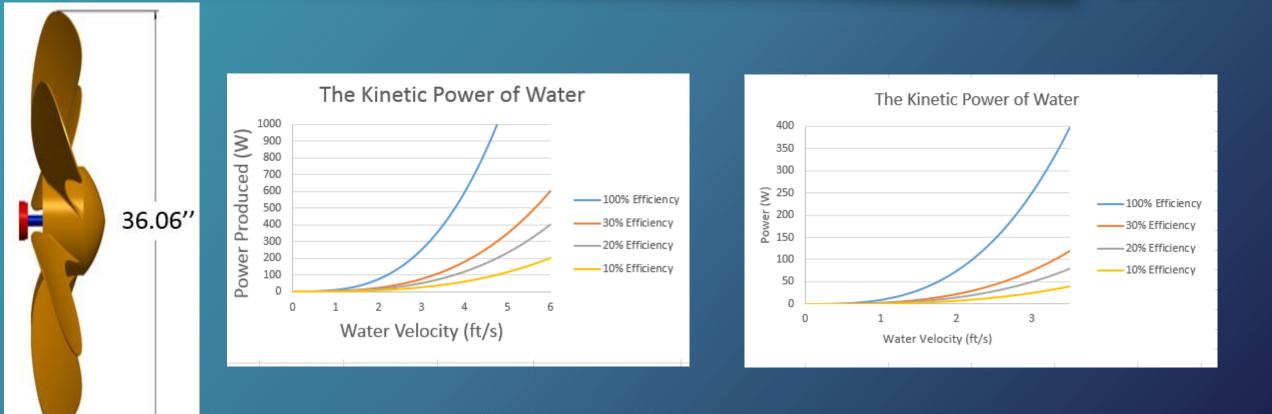
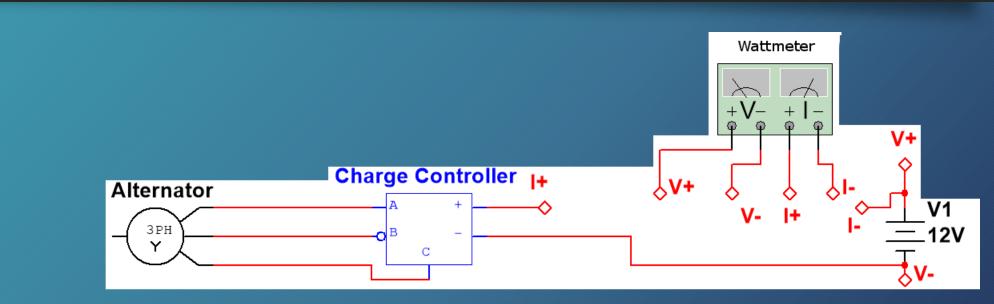

Fig. 12 - Hydroelectric Generator CAD with Dimensions Side - View

Fig. 13 - Hydroelectric Generator Cross-Sectional View with Dimensions


17

Hydrokinetic Turbine

18

Electronic Components - Circuit Schematic

19

Figure 27 - Circuit Schematic

Entrepreneurial Senior Design

InNolevation Challenge - \$10,000 for 1st place & Domi Venture entry

- Business Model Canvas
- Stage 1 Value Proposition (Success)
- Stage 2 Rest of canvas except for financials (Success)
- Stage 3 Completed Business Model Canvas with testing & pivots (Eliminated)

Team 7 - Radosevich

The Business Model Canvas

Team or Company Name: Personal Hydroelectric Generator Date: ||/|8/2015

... _

X Primary Canvas

Alternative Canvas

21

Key Partners	Key Activities	Value Proposition	Customer Relationships	Customer Segments
 Payment service such as <i>paypal</i> Distribution partners –USPS, FedEx, etc. 	 R&D –improve on hydroelectric generator design effective sales team 	 Provide a constant, clean energy source with enough power to supply a small home or cabin with electricity 	 Dedicated sales for large purchase accounts Support staff 	 Developing countries – specifically villages and homes near bodies of water
 Suppliers – generators, alternators, and turbine components 	 establish premium models with added features 	 Utilize the power of flowing water in order to generate electricity 	 Automation (where possible) Periodic newsletter <u>Channels</u> 	 Humanitarian organizations Outdoorsmen – riverside camp sites
 FSU – (senior design) supplies initial funding for the project Kickstarter – entry level fundraising Grants from 	 Brand name Product design Sales and support teams Sales of parts and expanded features 	 Significantly quieter than its gasoline counterpart Portability 	 Global sales and support team Online website with product information Social media accounts 	• Military
competitions such as InNolevation Challenge				

Figure 28 - Business Model Canvas

Team 7 - Radosevich

Presentation Overview

22

Fall 2015 Recap

- Project Definition
- Mechanical Overview
- Electrical Overview
- Entrepreneurial Overview

Current State

- Component Status Update
- Financial Update

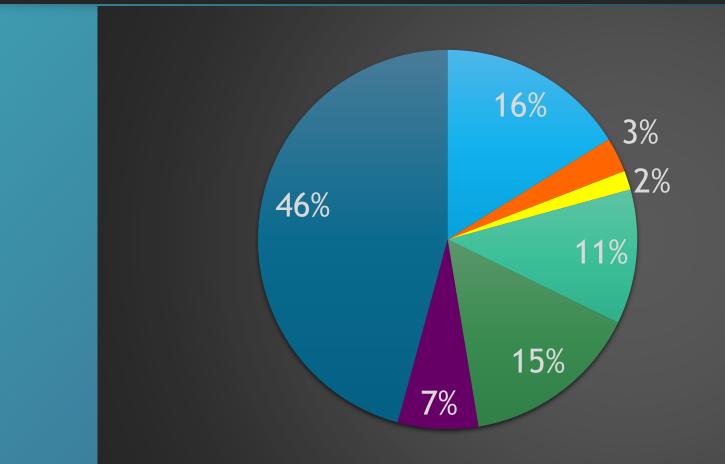
Spring 2016 Forecast

- Gantt Chart
- Experimental Forecast
- Entrepreneurial Forecast
- Design / Assembly Forecast

Component Status Update

Component	Delivered	Ordered	Designed	Needs to be Addressed
DC 540 Alternator	Х			
Charge Controller	Х			
Watt Meter	Х			
5' of 11" PVC Pipe	Х			
PVC End-Caps	Х			
Water-Proof Bearings		Х		
Shaft / Shaft Couplings		Х		
Gearbox Set				X
Anchoring System				X
Turbine Blade				X
Internal Housing			Х	

23


Team 7 - Radosevich

Components Delivered

24

Financial Update (Total Budget - \$1500)

DC 540 Alternator (\$239)

25

- 12V/25A Charge Controller (\$44)
 60V/100A Watt Meter (\$24)
- 5' of 11" PVC Pipe (\$170)
- External PVC End-Caps (\$224)
- Waterproof Bearing (\$101)

Available Resources (\$677)

Presentation Overview

26

Fall 2015 Recap

- Project Definition
- Mechanical Overview
- Electrical Overview
- Entrepreneurial Overview

Current State

- Financial Update
- Component Status Update

Spring 2016 Forecast

- Gantt Chart
- Experimental Forecast
- Entrepreneurial Forecast
- Design / Assembly Forecast

Potential Challenges

- Heat dispersion inside the housing
- Water contacting electrical components
- Achieving proper gear ratio for desired output
- Submerging the apparatus to desired depth
- Anchoring the system to withstand the necessary forces
- Keeping the design compact and easy to assemble

Team 7 - Radosevich

Gantt Chart

Feb 28, '16 Mar 27, '16 h 3, '16 Jan 17, '16 Jan 31, '16 Feb 14, '16 Mar 13, '16 Task Name Duration Start T S W S T T S W S T M FTSW S T M Μ F F T S -Order Components 5 days Fri 1/ Design Analysis Fri 1/ 17 days 3 days **Design Internal** Fri 1/ Housing Design GearBox 15 days Tue 1 ▲ Manufacturing 14 days Mon Manufacture 14 days Mon Internal Housing 1/18/ Manufacture/Order 14 days Mon 1/18/ Gearbox Manufacture/Order 14 days Mon 1/18/ Turbine ▲ Assembly 10 days Thu 2 Outside Housing 5 days Thu 2 Internal Housing 5 days Thu 2 Electronics/Wiring 6 days Wed Heat/Electrical 27 days Mon 1/18/ Testing Achoring Assembly 7 days Thu 2 Anchor Testing 8 days Mon 3 12 days Sat 3/ Consumer Instruction Manual

Figure 29 - Gantt Chart

Team 7 - Radosevich

28

Current Agenda

- Design/assemble internal housing for alternator and gearbox
- Test alternator for heat dissipation issues
- Test waterproof bearing
- Finalize Following Component Designs and Selections:
 - Turbine Blade
 - Anchoring System
 - Gear Box
- Investigate measures to protect turbine and turbine user during operation
- Implement a failsafe

Team 7 - Radosevich

Experimental Forecast

30

<u>Heat Dispersion Test</u>: Run the alternator at a constant rpm in a confined space while taking temperature measurements to ensure the alternator does not exceed a safe working temperature

<u>Waterproof Test</u>: Submerge the housing with the waterproof bearing to observe any potential leaks

<u>Electrical Output Test</u>: Correlate alternator rpm with wattage output

Anchoring Test: Discover how our system responds under flowing water

Entrepreneurial Forecast

31

Introduce the ACC Competition we are doing, give the upcoming deadlines and go over the requirements.

Design/Assembly Forecast

32

- Ordering of the turbine blades instead of manufacturing
 - Strong blades since water flow can be destructive
 - Wind-turbine since it's a common concept
- Gearbox system!!!!?!?!?!?!?!?!?
- Anchoring system will be designed once housing with turbine is set up and tested
 - Three possible methods (Cantilever, Floating system, tree ratchet webbing support)

• This section will be used to go over aspects we plan to design and rough timeline (Anchoring System internal housing, etc..) This section BLAH!

References

- [1] 1,100-Watt Gasoline Powered Portable Generator. (n.d.). Retrieved from The HomeDepot: http://www.homedepot.com/p/PowerStroke-1-100-Watt-Gasoline-Powered-Portable-Generator-PS901200/204617068
- [2] 1,150-Watt Gasoline Powered Portable Generator with Briggs & Stratton Engine. (n.d.). Retrieved from The HomeDepot: http://www.homedepot.com/p/PowerBoss-1-150-Watt-Gasoline-Powered-Portable-Generator-with-Briggs-Stratton-Engine-30627/205416464
- [3] 1,200/1,500-Watt Recoil Start Gasoline Powered Portable Generator. (n.d.). Retrieved from The HomeDepot: http://www.homedepot.com/p/Champion-Power-Equipment-1-200-1-500-Watt-Recoil-Start-Gasoline-Powered-Portable-Generator-42436/203791696
- [4] 1,200-Watt 2 Stroke Gasoline Powered Portable Generator. (n.d.). Retrieved from The HomeDepot: http://www.homedepot.com/p/All-Power-1-200-Watt-2-Stroke-Gasoline-Powered-Portable-Generator-APG3004D/202757598
- [5] (n.d.). Retrieved from Geography Fieldwork: http://www.geography-fieldwork.org/rivers/river-variables.aspx
- [6] 5.1 Stream Flow. (n.d.). Retrieved from United States Environmental Agency: http://water.epa.gov/type/rsl/monitoring/vms51.cfm
- [7] USGS Water Data for the Nation. (n.d.). Retrieved from USGS: http://waterdata.usgs.gov/nwis
- [8] Turbines. (n.d.). Retrieved from indiamart: http://www.indiamart.com/flovel-energy/turbines.html
- [9] Micro Hydro. (n.d.). Retrieved from Hydrogen Appliances: http://www.hydrogenappliances.com/hydro.html
- [10] Turgo Turbine. (n.d.). Retrieved from Encyclopedia of Alternative Energy: http://www.daviddarling.info/encyclopedia/T/AE_Turgo_turbine.html

References

- [11] Difference Between Kaplan and Francis Turbine. (2013, 02 23). Retrieved from DifferenceBetween.com: http://www.differencebetween.com/difference-between-kaplan-and-vs-francis-turbine/
- [12] Francis Turbines. (2015, 09 12). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Francis_turbine
- [13] "Kaplan Turbine A Mammoth in Hydroelectric Power Generation." ~ *Learn Engineering*. N.p., n.d. Web. 18 Oct. 2015. : http://www.learnengineering.org/2013/08/kaplan-turbine-hodroelectric-power-gneration.html
- [14] Ingram, Grant. "Very Simple Kaplan Turbine Design." (n.d.): n. pag. School of Engineering, Durham University. Web. 18 Oct. 2015. : http://community.dur.ac.uk/g.l.ingram/download/kaplandesign.pdf
- [15] "Kaplan Turbines Renewables First." Renewables First. N.p., n.d. Web. 18 Oct. 2015. : https://www.renewablesfirst.co.uk/hydropower/hydropower-learning-centre/kaplan-turbines/
- [16] Alternator. (2015, 09 30). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Alternator
- [17] MacGregor, R. (2012, 09 06). The Difference Between Car and Boat Batteries. Retrieved from The Globe and Mail: http://www.theglobeandmail.com/globe-drive/culture/commuting/the-difference-between-car-and-boatbatteries/article1372050/
- [18] Burden, T. (n.d.). Selecting the Right Anchor. Retrieved from West Marine: http://www.westmarine.com/WestAdvisor/Selecting-The-Right-Anchor

35

QUESTIONS?