

Team 11 Robo-Weeder

Steven Miller M.E., Arriana Nwodu M.E., Christopher Murphy M.E., Zhang Xiang M.E., Steven Williamson E.E., Aquiles Ciron E.E.

Project Sponsor: Jeff Phipps

Faculty Advisor: Dr. Nikhil Gupta

"Organic farming techniques rely heavily on labor intensive methods, that creates large production costs."

Purpose:

The purpose of the Robo-Weeder Senior Design project is to design a robotic system that will remove unwanted weeds through the application of a shearing force in order to facilitate the growth of high nutritional organic crops.

Design Features:

- Remotely Operated
- All Electric (12V Battery System)
- Splashproof
- Interchangeable Shearing
 Component
- All-Wheel Drive

Objectives:

The primary objective is to design and create a proof of concept system, with varying cutting attachments that will remove weeds from the rows of planted crops and facilitate organic farming.

Projected Budget

\$3,000.00:

Steering Component:

- Front and Rear steering
- 30 degree rotation
- Independent Steering
 - Parallel Steering
 Capabilities

<u>Electrical</u> <u>Housing:</u>

- Splashproof:
- Microcontroller

11.37"

• Receiver

Motor Controllers

Shearing Component:

- Two Helical Augers
- Opposing Auger Rotation
 - Stability Purposes
- Vertical Adjustment

6.8% 29% Drive Motors Auger Motors 20.9%

Electrical Components:

Turnigy 6X

Transmitter

Turnigy XR700 Receiver

Arduino Mega 2560 R3 Microcontroller

DC Motors

Initial Testing

Preliminary FEA stress study of conceptual chassis design

The Shear Stress vs. Normal Stress graph determines exact amount of force to facilitate the proper amount of soil shear.

Current Status:

- Optimal Auger Selection
- Fabrication of Chassis
- Programming Microcontroller
- Battery Selection

Future Goals:

- Motor Controller Selection
- Linear Actuator Selection
- FMEA Failure Mode and Effect Analysis
- Prototyping

Senior Design 2016