

Advisors:

Dr. Gupta Dr. Hooker Steven Miller Zhang Xiang Aquiles Ciron Arriana Nwodu Steven Williamson Christopher Murphy January 21, 2016

<u>Sponsor:</u> Jeff Phipps

Organics Locally Grown

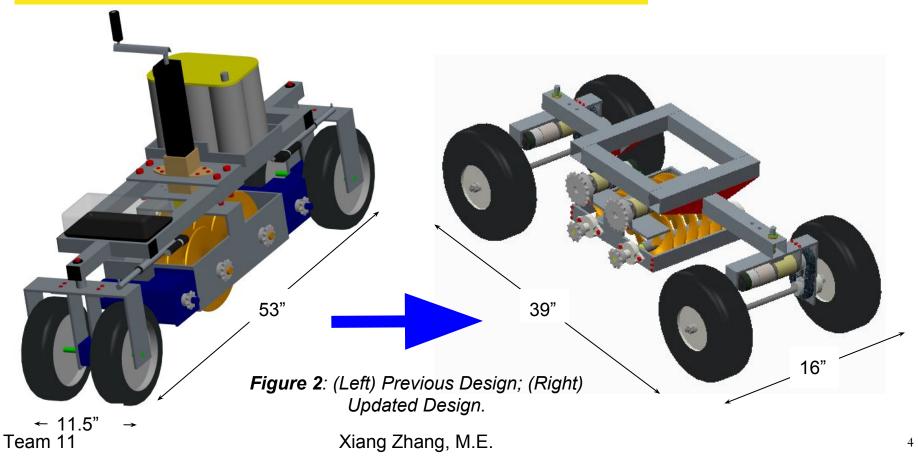
Organic Vegetables

Tallahassee, F

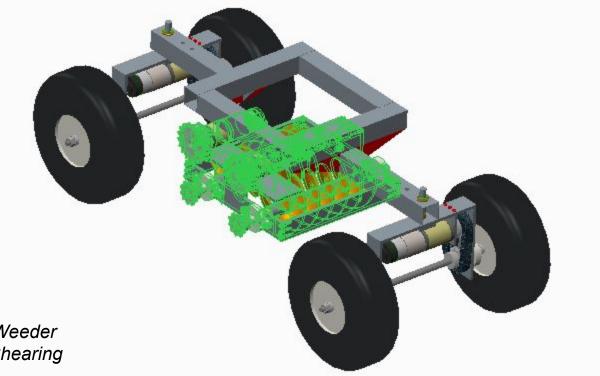
Presentation Overview

- Project Background
- Progress
 - a. Mechanical Features
 - b. Electrical Features
- Budget
- Scheduling
- Summary

Figure 1: Orchard Pond Organics


Project Background

- **Need Statement:** "Organic farming techniques rely heavily on labor intensive methods which create large production costs for organic produce."
- **Goal Statement:** "Develop a 'proof of concept' robotic machine that will enhance the production of organic crops."


• Constraints:

- Mobile
- Auger Style Shearing
- Remotely Operated
- No till
- 1" soil interruption

Design Modifications - Mechanical

Shearing Mechanism

Figure 3: Robo-Weeder with Highlighted Shearing Mechanism.

Team 11

Shearing Mechanism

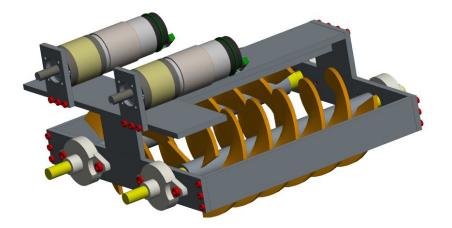


Figure 4: Fully Assembled Shearing Mechanism.

Mechanical Parameters:

- 2 Augers
- 4" Diameter Augers
 - Opposite handed Auger Flighting.
- Each Auger needs 70 in-lb Torque to operate effectively.
 Roller Chain and Sprocket System

Custom Augers

• Custom Auger System

- Bloom Manufacturing
- 4" Auger Flighting
 - House up to 5" Diameter

• 1.3" Auger Pitch

- 3 Sections of Flighting
- 120 Degree Angular Spacing
- Mild Carbon Steel
 - 7 Gauge (0.1793")

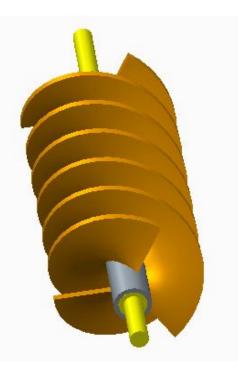


Figure 5: Custom Auger Assembly

Interchangeable Auger System

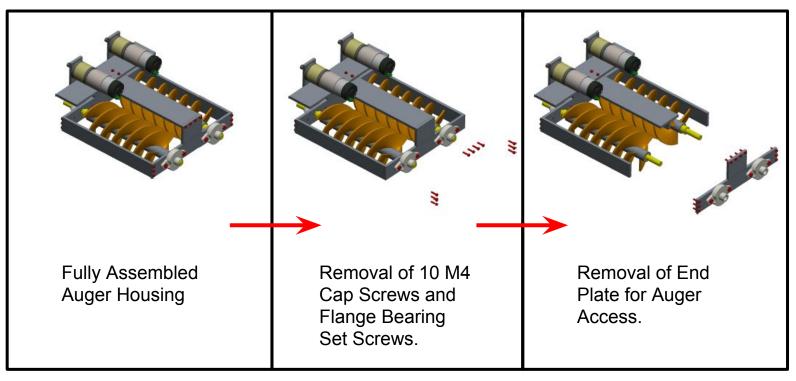
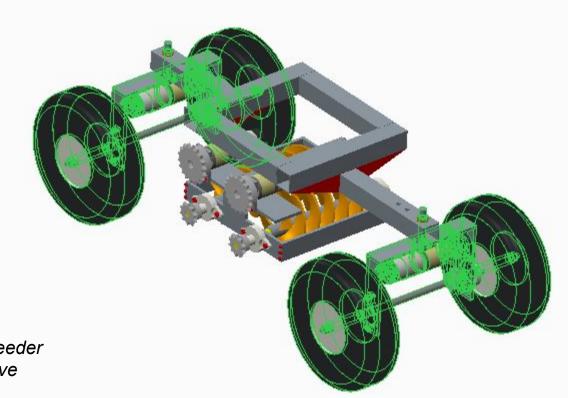



Figure 6: Illustration showing the removal of the Auger Assembly.

Drive Mechanism

Figure 7: Robo-Weeder with Highlighted Drive Mechanism.

Team 11

Drive Mechanism

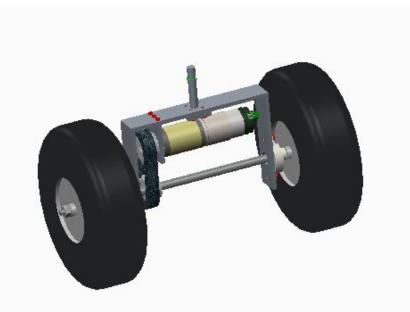
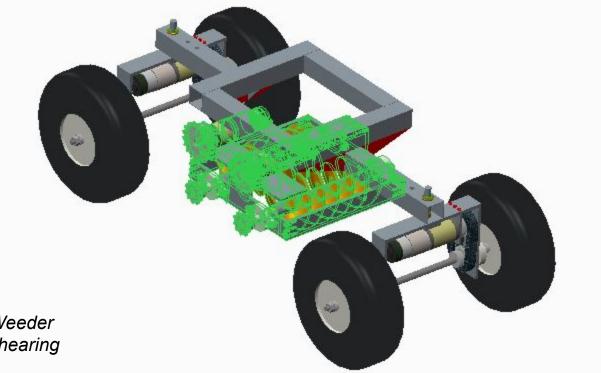


Figure 8: Robo-Weeder Drive Mechanism.

Mechanical Parameters:

• Propulsion


- 100 in-lbs Torque
- Roller Chain & Sprocket
- 10" Diameter Wheels
 - High Traction
 - High Ground Clearance
- 30 Degree Turn
 - Independent/Parallel
- Steering Requirement
 - 200 in-lbs Torque

Electrical Design Needs

- •1 Transmitter/ Receiver
- •1 Microcontroller
- •4 Motors
 - (2) Augers
 - (2) Drive

- •2 Steering Motors
- 6 Motor Controller Channels
- •12V Battery/Power Supply

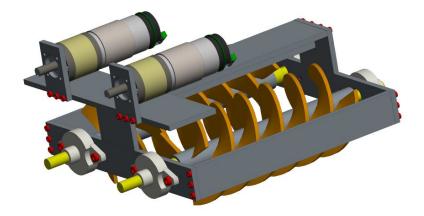

Shearing Mechanism

Figure 9: Robo-Weeder with Highlighted Shearing Mechanism.

Team 11

Shearing Mechanism

Electric Parameters:

•2 Motors

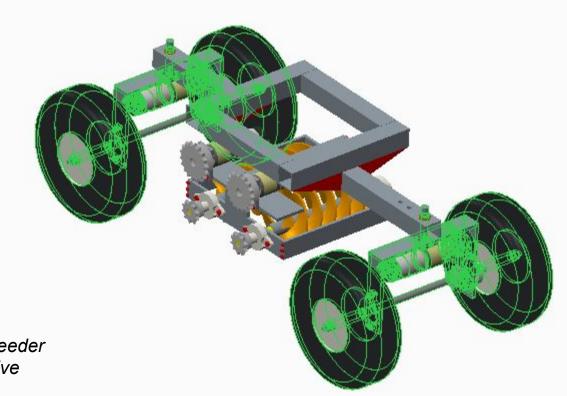

•70 in-lb Torque (per Auger)

Figure 10: Fully Assembled Shearing Mechanism.

• 100 RPM (per Auger)

Team 11

Drive Components

Figure 7: Robo-Weeder with Highlighted Drive Mechanism.

Team 11

Drive Mechanism

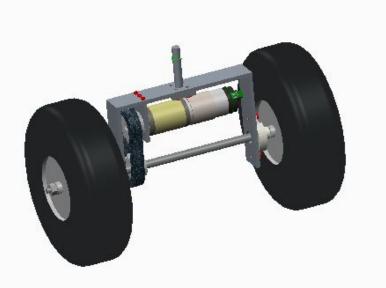


Figure 8: Robo-Weeder Drive Mechanism.

Electric Parameters:

• 2 Drive Motors

•~100 lb-in Torque (Drive Motor)

• 50 RPM (Drive Motor)

Transmitter

- RadioLink T6EHP-E 2.4G 6CH Transmitter and
 - Receiver (\$30)
 - Transmits through Radio Frequency
 - 6 Channels
 - Augers
 - "Drive" Motors
 - Steering Motors

Figure 9: Robo-Weeder Transmitter and Receiver.

Microcontroller

- <u>Arduino Mega 2560</u> (\$45)
- Processor: ATmega2560 @ 16 MHz
- 54 Digital I/O Pins
 - 14 PWM Pins
- 16 Analog Inputs
- 7V 12V Operating Voltage

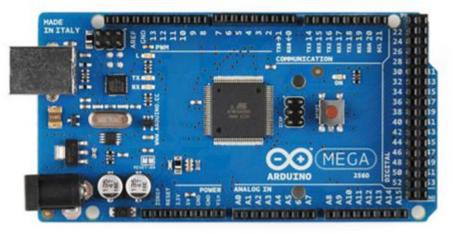


Figure 10: Robo-Weeder Microcontroller.

Motor Controller

- Polulu 18v25 High-Power motor driver (\$50)
 - Controls 1 Motor
 - Up to 25A continuous output per channel
- 5V 30V Operating Voltage

Figure 11: Motor Driver for use on the Robo-Weeder.

<mark>Motors</mark>

- Motor selected (pending approval)
 - advisor
- 4 Motors to operate:
 - Drive feature
 - Auger feature

Motor	PG71 Planetary Gearbox with Motor
Cost	\$89
Speed	75 RPM
Torque	16.6 ft-lbs
Amperage	22 Amps

Figure 12: Andymark DC motor for Drive and Shearing operation.

Team 11

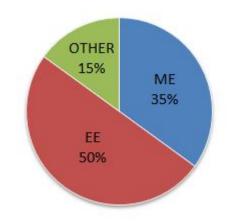
Power Supply

- 12V DC Power Supply(\$24)
- Maximum Outputs:
 - Up to 30A
 - Up to 360W
- Will be used for testing purposes

Figure 13: Power Supply for Bench Testing the Robo-Weeder Electrical Components..

Drive-Code

Successfully Tested Auger-Code

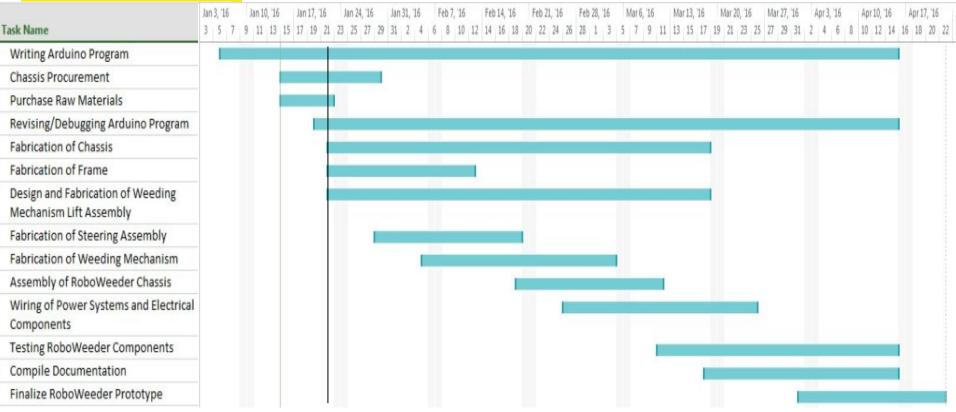


Successfully Tested

Total Budget: \$3000.00

Figure 14: Funding Breakdown for the Robo-Weeder Project.

Team 11


Current Cost: \$302.7

Item Description	Part Number	Total Cost
Arduino Mega 2560 Microcontroller	RB-RIk-03	49.99
Radiolink Transmitter and Receiver	RB-Ard-33	36.81
Auger Flighting - Right Hand	528	61.00
Auger Flighting - Left Hand	528L	61.00
10" Pneumatic Tire/Wheel	2252	19.98
12V 30A DC Universal Power Supply 360W	S-360-12	23.97
Heavy Duty Power Cord - 6 Feet	N/A	9.99
16 Pack 2800 mAh Rechargable Batteries w/ Charger	N/A	39.99

Future Cost: \$755.8

Item Description	Part Number	Total Cost
Polulu 18v25 Motor Controller	758	199.80
(Auger Motors) PG71 Motor and Encoder	am-2971	178.00
(Drive Motors) PG71 Motor and Encoder	am-2971	178.00
Material		200.00

Gantt Chart

Team 11

Zhang Xiang M.E.

Schedule

Current Project Tasks:

- Complete a Fully Operational Control Program (Arduino Code)
- Web design
- Material order

Future Project Tasks:

- Fabrication of Chassis
 - Fabrication of Frame
 - Fabrication of Steering Assembly
- Fabrication of Weeding Mechanism
- Fabricate the Weeding Mechanism Lift Assembly
- Test All Systems on the Full Assembly
- Compile Accurate Documentation for all Aspects of Project

Goal:

Design a remotely operated robotic system with an interchangeable shearing mechanism to remove weeds on an organic farm.

Robo-Weeder

Steering: Independent front and rear with parallel steering capability.

Weeding: Auger Style to minimize soil disruption.

Communication: Radio Controlled for ease of operation.

Challenges moving Forward <u>Time is the Team's major opposition.</u>

- 1. <u>http://www.todaysdietitian.com/newarchives/040715p40.shtml</u> (organic vs conventional farming)
- 2. http://www.orchardpondorganics.com/images/gallery/original/1301371300 f7d5753c3bf1.jpg
- 3. <u>http://www.ocia.org/sites/default/files/ documents/EN-QS-M-003_0.pdf</u> Organic standards
- 4. <u>https://en.wikipedia.org/wiki/Earthworm</u> earthworms
- 5. <u>https://www.arduino.cc/en/Tutorial/PWM</u> (PWM Table, Microcontroller)

Questions?