

Robo-Weeder Spring Design Review I

Christopher Murphy M.E. Steven Williamson E.E. Arriana Nwodu M.E.

Acknowledgements: Dr Nikhil Gupta

Dr. Hooker

Jeff Phipps

Steven Miller M.E. Zhang Xiang M.E. Aquiles Ciron E.E.

Brandon Chew A.S.C

February 18, 2016

Presentation Overview

- Introduction
- System Overview
 - a. Mechanical Updates
 - b. Electrical Updates
- Component Selection
- Budget
- Future Goals

Figure 1: Last years Robo-Harvester

Need Statement: "Organic farming techniques rely heavily on labor intensive methods which create large production costs for organic produce."

Goal Statement: "Develop a 'proof of concept' robotic system that will enhance the production of organic crops."

Constraints:

- Remotely Operated
- Auger Style Shearing
- 1" soil disturbance
- No tillage

Figure 2: Orchard Pond Organics

Mechanical System Overview

Proof of Concept Mechanical Objectives

- Mobile
- 1" soil disturbance
- Lightweight
- Independent/Parallel Steering
- Interchangeable Shearing Implements
- Durable
- Splashproof

Previous Designs

Design a: Moment due to motor placement.

Figure 3(a-c): Previous Designs

Previous Designs

Design a: Moment due to motor placement.

Design b: Unstable length to width ratio

Figure 3(a-c): Previous Designs

Previous Designs

Design a: Moment due to motor placement.

Figure 3(a-c): Previous Designs

sign c: Manual auger lift system.

Arriana Nwodu M.E.

Design b: Unstable length to width ratio

Robo-Weeder

- Weight: 70 lbs
- Dimensions: 39" x23"x16"
- Subsystems:
 - Chassis
 - Steering
 - Shearing
 - Lift Assembly

Chassis

Parameters:

- Weight: 6 lbs
- Dimension: 31"x11"x6.5"
- Materials: Aluminum

Current Status:

- Fabrication is complete.
- Awaiting installation of subcomponents.

Figure 5: Robo-Weeder Chassis

6.5"

Steering

Parameters:

- Weight: 13.6 lbs
- Dimension: 16"x10"x10"
- Aluminum & Stainless Steel
- 1.8:1 Roller Chain and Sprockets

Current Status:

- Materials have been procured.
- Fabrication.

Figure 6: Steering Assembly

Shearing

Parameters:

- Weight: 27 lbs
- Dimension: 14"x13.5"x10"
- Aluminum, Stainless Steel, & Steel
- 1:1 Roller Chain and Sprockets

Current Status

- Materials have been procured.
- Fabrication in progress.

Lift Assembly

Parameters:

- Weight: 14 lbs Lift System
- Dimension: 29"x18"x16"
- Material: Aluminum & Stainless
 Steel

Operations

- Linear Actuator
- Vertical Positioning of the Shearing Mechanism.

Torque Requirements & Component Placement

Drive Motor Analysis @ 70% Efficiency

NEEDED

• Torque: 140 in-lbs

MOTOR & GEARHEAD

- RS-775 DC Motor
- AndyMark PG 71:1 Gearhead

OUTPUT

- Torque: 140 in-lbs
- Speed: 12.9 RPM
- Tangential Velocity: 6.7 in/s

Steering Motor Analysis @ 70% Efficiency

NEEDED

• Torque: 200 in-lbs

MOTOR & GEARHEAD

- RS-775 DC Motor
- AndyMark PG 188:1 Gearhead

OUTPUT

- Torque: 200 in-lbs
- Speed: 5.7 RPM
- 30° Turn Time: 0.8 seconds

Shearing Motor Analysis @ 70% Efficiency

NEEDED

• Torque: 70 in-lbs

MOTOR & GEARHEAD

- RS-540 DC Motor
- Banebots P60 104:1 Gearhead

OUTPUT

- 70 in-lbs Torque
- 69 RPM
- 1.15 Rev/s
- 4.6 in/s of Shear Velocity

Robo-Weeder Motor Selection

Steering

PG188 Gearmotor

- 28 RPM No Load
- 396 in-lb stall torque
- 22 Amp Stall Current
- Encoder Ready

Drive

PG71 Gearmotor

- 75 RPM No Load
- 200 in-lb stall torque
- 22 Amp Stall Current
- Hall Effect Encoder

Shearing

RS540 Motor w/ 104:1 Gear

- 162 RPM No Load
- 256 in-lb stall torque
- 42 Amp Stall Current
- No Back Shaft

Lift

Firgelli Linear Actuator

- Dynamic Load: 300 lbs
- Static Load: 150 lbs
- Speed: 0.5 in/s
- Stroke: 6"
- Feedback control compatible Arduino Microcontrollers.
 - Monitoring exact position of the shearing mechanism.

Figure 11: Linear Actuator for Lift Mechanism

Electronic Component Placement

Chris Murphy M.E.

Electrical System Overview

Proof of Concept Electrical Objectives

- Controllable Speed and Steering
- 12V Battery Supply
- 6 Communication Channels
- Remotely Operated
 - Wireless Communication

Encoders

Will be used for:

- Controlling Steering Feature
- Track Speed of Robo-Weeder
- Track Speed of Augers

Absolute Encoder (Steering)

 Absolute encoders read angular position and maintains position even when the power is removed.

Hall Effect Encoder (Drive/Auger)

• A Hall effect Encoder measures the response of a shaft to a magnetic field. Position is lost when power is removed.

Figure 13: (Left) Absolute Encoder (am-2899) (Right) Hall Effect Encoder

Steven Williamson E.E.

Electrical System Overview

Steven Williamson E.E.

Transmitter

- FlySky FS-T6 2.4G 6CH Transmitter and Receiver
 - Transmits through Radio Frequency
 - 6 Channels:
 - Augers
 - "Drive" Motors
 - Steering Motors

Figure 14: FlySky FS-T6 Transmitter

Motor Controller

- RoboClaw 2x45A
 - 2 Channels per Controller
 - 6V 34V Operating Voltage
 - Up to 45A Operating Current
 - Current Monitoring
 - To Set Current Limit for Motors

Figure 15: RoboClaw Motor Controller

Electrical Testing

- Testing Arduino Code for Wireless Communication
 - Drive Feature (Successful)
 - Auger Feature (Successful)
 - Steering Feature (In Progress)
 - 12V DC Power Supply
 - Prototype Testing with Motors
 - Up to 30A Continuous Output

Figure 16: Power Supply for Bench Testing the Robo-Weeder Electrical Components.

Current Status & Future Goals

Gantt Chart

		Jan 3, '16		Jan 17, '16		Jan 31, '16		.6	Feb	14, 1	14, '16		Feb 28, '16			Mar	Mar 13, '16		Mar 27, '16		6	Apr 10,		'16	
Task Name	5	9	13	17	21	25	29	2	6 10	14	18	22	26	1	5	9	13	17	21	25	29 2	6	10	14	18
Writing Arduino Program			1								R														
Chassis Procurement			į																						
Purchase Raw Materials			İ																						
Revising/Debugging Arduino Program				1							Ń														
Fabrication of Chassis											d														
Fabrication of Frame																									
Design and Fabrication of Weeding Mechanism Lift Assembly																									
Fabrication of Weeding Mechanism									1																
Fabrication of Steering Assembly															1										
Wiring of Power Systems and Electrical Components														1	1										
Testing RoboWeeder Components																									
Assembly of RoboWeeder Chassis																				I					
Compile Documentation																									
Finalize RoboWeeder Prototype																									

Gantt Chart - Fabrication Milestone

Gantt Chart - Testing Milestone

Budget

Team Total Running	11 - Robo Weeder Funds: 3,000.00 Balance: 1,774.44					
	Order	red Items				
Vendor	Item Description	Part Number	Quantity	Price	Total Cost	Status
Robot Shop	Arduino Mega 2560 Microcontroller	RB-Rlk-03	1	49.99	34.99	Received
Robot Shop	Radiolink Transmitter and Receiver	RB-Ard-33	1	36.81	36.81	Received
Bloom MFG	Auger Flighting - Right Hand	528	1	61.00	Received	
Bloom MFG	Auger Flighting - Left Hand	528L	1	61.00	61.00	Received
McMaster	Material - AL Flat Bar and Tubing, Steel Rod and Tube	N/A	÷	120.00	120.00	Received
Northern Tool	10" Pneumatic Tire/Wheel	2252	2	9.99	19.98	Received
Amazon	12V 30A DC Universal Power Supply 360W	S-360-12	1	23.97	23.97	Received
Amazon	Heavy Duty Power Cord - 6 Feet	N/A	1	9.99	9.99	Received
Amazon	16 Pack 2800 mAh Rechargable Batteries w/ Charger	N/A	1	39.99	39.99	Received
Robotshop	PG188 Gearmotor - No Encoder (Steering)	am-2193a	1	79.00	79.00	Ordered
Robotshop	PG71 Gearmotor w/ encoder (Drive)	am-2971	1	89.00	89.00	Ordered
AndyMark	Absolute Encoder w/ Cable	am-2899	1	45.00	45.00	Ordered
Pololu	Roboclaw Motor Controller 45A continuous	2397	2	169.95	339.90	Received
McMaster	Materials - 304 Stainless Rod and Flatbar	N/A		35.63	35.63	Received
Grainger	1/2 Flange Bearing	4X727	2	21.22	42.44	Ordered
Robot Shop	Arduino Mega 2560 Microcontroller	RB-Rlk-03	1	49.99	34.99	Ordered
Amazon	1/2 Brass Steering Bushing	EXEF081008	2	8.99	17.98	Received
McMaster	1/2 Chain & 1/2 Sprockets	N/A	-12	73.90	73.90	Ordered
Amazon	FlySky FS-T6 2.4ghz Digital Transmitter	N/A	1	49.99	49.99	Ordered
AndyMark	Hall Effect Encoder Cable	am-2993	2	5.00	10.00	Ordered
				Total	1,225.56	

Chris Murphy M.E.

Looking Ahead

- 1. Completion of Component Fabrication.
- 2. Design and Procurement of Power Systems.
- 3. Installation of Components on Chassis.
- 4. Testing Arduino program on the Robo-Weeder Chassis.
- 5. Developing Splashproof Aspect

Video

References

- 1. http://www.andymark.com/Gearmotor-p/am-2193a.htm (Steering Motor Specs)
- 2. <u>http://www.andymark.com/Gearmotor-p/am-2971.htm</u> (Drive Motor Specs)
- 3. http://www.orchardpondorganics.com/images/gallery/original/1301371300_f7d5753c3bf1.jpg
- 4. <u>http://www.dynapar.com/technology/absolute-rotary-encoders/</u> (Encoders)
- 5. <u>https://www.pololu.com/product/2397</u> (RoboClaw Specs)

Questions?