Team 19 : Construction Marking Robot Interim Design Review

Team Members: Justin Gibbs, Kelsey Howard, Brandon Roberts, Derrick Portis, and Christian Baez

Sponsor: Mark Winger, PSBI

Advisors: Dr. Collins, Dr. Gupta

Date: November 19, 2015

Presentation Outline

- Introduction
- Our Approach
 - Converting layout file to coordinates
 - Sending data to robot
 - Localization
 - Marking Mechanism
 - Obstacle Avoidance
- Planning for the Future

Team #19 Slide 2 of 43

Introduction

Team #19 Slide 3 of 43

Justin Gibbs

Background

- Productivity in the Construction Industry has been low since the recession
- The Team's Sponsor, Mark Winger of PSBI saw the inclusion of more technology into the industry as a solution
- One area where this could be proven:
 - Manual layout of floorplans on site
 - Inefficient in terms of time duration
 - Prone to high error propagation due to human error and miscommunication amongst multiple contractors
 - The inclusion of a robot to assist in this process could save the industry both time and money by working more efficiently and accurately

Team #19 Slide 4 of 43

Project Scope

- The scope of this project is to implement a "proof of concept" marking robot which can:
 - Receive a CAD file of a floorplan and mark it out on concrete
 - Do so within ½" accuracy
 - Navigate autonomously and avoid obstacles
 - Generate an error report

Need Statement

"The *construction industry* is in need of a means of <u>increasing</u> <u>efficiency and productivity</u> as well as <u>reducing the amount of</u> <u>time and error</u> that goes into laying out floor plans *manually*."

Need Statement

"The *construction industry* is in need of a means of <u>increasing</u> <u>efficiency and productivity</u> as well as <u>reducing the amount of</u> <u>time and error</u> that goes into laying out floor plans *manually*."

Goal Statement

"Implement a 'proof of concept' high precision marking robot that will lay out the preliminary *floor plan of a construction site,* increasing <u>efficiency and productivity</u> of the layout process."

> **A** PSBI Construction Marking Robot

Justin Gibbs

Team #19 Slide 6 of 43

Objectives

- Add functionality to robot to receive a CAD file of a floor plan and convert it into useable coordinates
- Design, fabricate, and implement a marking mechanism
- Make the robot able to navigate autonomously, avoid obstacles, and generate an error report

Design Requirements

- The final product must be:
 - Able to make marks within ½ " accuracy
 - Easily portable
 - Able to mark on concrete
 - Able to mark across 100 sq. ft. within 10 minutes
 - Able to navigate autonomously

House of Quality

- Most Important Engineering Characteristics:
 - Autonomy
 - Weight
 - Battery Life
 - Rate of Coverage
 - Precision
- Selling Points:
 - Functionality (Able to complete exact task)
 - Speediness

APSBI Construction Marking Robot

Justin Gibbs

Team #19 Slide 10 of 43

Justin Gibbs

- Turning the CAD file into a usable coordinate file
 - $dxf \rightarrow txt$
 - Makes file understandable to the robot
- Coordinates will aid the robot to move in space
- Robot must be able to recognize when to mark
- Generating more densely populated coordinate points
 - Greater precision
 - Minimize marking line loss due to obstacle avoidance

<u>Ransen Software : Pointor</u>

- Reads in CAD (dxf file type)
- Analyzes the CAD structure
- Replaces lines with endpoint coordinates
- Generates a point list of coordinates
- Able to export point list to a text file

Ransen Software : Pointor

Team #19 Slide 15 of 43

Derrick Portis

SBI

Tayout_1a - PointorV10		-	o ×
<u>File</u> Edit Options Search <u>V</u> iew Extras <u>H</u> elp			
			•
6.0 16.0			
	.02 00 11.0		
80 60			
	A		
an o an o			
Ready		15.0 13.3 PN: 7 D: 0	

APSBI Construction Marking Robot

Team #19 Slide 16 of 43

Derrick Portis

Slide 16 of 43

Derrick Portis

Point list: Layout_1a

- Coordinates come in pairs
 - Endpoints of a line
- Repeating coordinates occur when multiple lines have the same endpoint
 - i.e. Corner or square

Code	Х	Y	Z	Desc	Flags
0	22.0000000000	11.0000000000	0.0000000000	0	
1	22.000000000	6.000000000	0.000000000	0	
2	0.0000000000	6.000000000	0.000000000	0	
3	10.000000000	6.000000000	0.000000000	0	
4	0.0000000000	6.000000000	0.000000000	0	
5	0.0000000000	16.000000000	0.000000000	0	
6	0.0000000000	16.000000000	0.000000000	0	
7	10.000000000	16.000000000	0.000000000	0	
8	10.000000000	6.000000000	0.000000000	0	
9	10.000000000	16.000000000	0.000000000	0	
10	0.0000000000	0.0000000000	0.000000000	0	
11	3.000000000	0.0000000000	0.000000000	0	

Output of Pointor Program

Team #19 Slide 17 of 43

Derrick Portis

Point Propagation

Initial Data Points

0 22.00000000 11.00000000 1 22.00000000 6.00000000

Team #19 Slide 18 of 43

Derrick Portis

Point Propagation

Initial Data Points 0 22.00000000 11.00000000 1 22.00000000 6.00000000 **Propagated Data Points** Start point (22.00, 11.00) Intermed point: (22.00, 10.50) Intermed point: (22.00, 10.00) Intermed point: (22.00, 9.50) Density Intermed point: (22.00, 9.00) Intermed point: (22.00, 8.50) Propagation Intermed point: (22.00, 8.00) Program Intermed point: (22.00, 7.50) Intermed point: (22.00, 7.00) Intermed point: (22.00, 6.50)

End point (22.00, 6.00)

Team #19 Slide 18 of 43

Derrick Portis

Software and Hardware Integration

- Needed for robot to read text file
- The marking attachment, robot, and external localization device have to be able to communicate with one another
- Microprocessor has the programming capability and power to control everything

Raspberry Pi 2

- Specifications
 - 900MHz quad-core CPU
 - 1 GB RAM
 - 40 GPIO pins

- Will run high level code that sends text file to robot
- Controlling marking mechanism and executes movement functions in response to external sensors
- Will operate on Windows 10 IoT Core OS to run programs and executable files

A PSBI Construction Marking Robot

Team #19 Slide 21 of 43

Software and Hardware Integration

Raspberry Pi 2 will be the medium for the system

Team #19 Slide 22 of 43

Derrick Portis

SBI

Pioneer 2-DX

- Provided by CISCOR
- Differentially steered
 - Driven by two DC Motors
- Router for wireless communication
- Laser range finder for obstacle detection (shown in blue)
- Robot total weight = 13.5 kg
- Runs on real-time operating system (QnX Neutrino RTOS)
- Approximately 13" W x 17" L x 9" H

Construction Marking Robot

Team #19 Slide 24 of 43

Localization

- For accurate movement, the robot needs to be aware of where it is
- Possible options
 - Wheel encoders
 - Visual sensors
 - GPS
 - Not adequate for needed accuracy
- Localization Requirements
 - Continually checks robots position
 - Provides high accuracy relative to layout
 - Removes error propagation

Robotic Total Station

- Features
 - Calibrates via triangulation with two structures of known location
 - Tracks and measures the *exact position* of an external prism
 - Measures horizontal and vertical angles as well as slope distance
 - Verifies points are being marked *accurately*
 - Contains file of layout in internal memory
 - 20Hz update rate

Team #19 Slide 27 of 43

Using the Robotic Total Station

Trimble S6 RTS Setup

Team #19 Slide 28 of 43

Brandon Roberts

Team #19 Slide 29 of 43

Brandon Roberts

Previous Design

- 2 servo motors
- Provides greater reach
 - Movement in 2 directions
 - Marks outside of tread
- Stepper motor attached to rack and pinion
- Issues with design:
 - Too simplistic to fulfill objectives
 - No plan for multiple colors
 - Will not properly apply pressure on marker

Team #19 Slide 30 of 43

New Concept

New Concept

- Gantry design comprised of two linear translation systems
- System will be made up of a lead screw driven by a stepper motor, guided by linear rails
- Improvements from old design:
 - Modular design allows for changing markers in the future
 - More accurate marker placement
 - Can draw various shapes with more ease

Team #19 Slide 32 of 43

Brandon Roberts

Obstacle Avoidance

Typical construction site

- Typical obstacles:
 - Rebar
 - Electrical conduits
 - PVC pipes
 - People
 - Trash
- Robot needs to avoid these obstacles

Team #19 Slide 34 of 43

Obstacle Avoidance Approach

- Initial approach
 - Robot wants to follow desired path
 - Will adjusts its path when an obstacle is detected
 - Will return to desired path at closest, safest point
 - Distance sensor used to detect obstacles
 - Radius of influence
 - 1.5 feet

Team #19 Slide 35 of 43

Justin Gibbs

Obstacle Detection

Sick LMS 200

Team #19 Slide 36 of 43

Laser Measurement System

- More accurate than sonar and IR sensors
- Internal mirror rotates 180°
- May need to adjust the vertical orientation for the near future

Angular resolution chart

Angular resolution	0.25°	0.5°	1.0°
Max Scanning angle	100°	180°	180°
Max # of measure values	401	361	181

Justin Gibbs

Obstacle Detection

Sick LMS 200

Team #19 Slide 36 of 43

Laser Measurement System

- More accurate than sonar and IR sensors
- Internal mirror rotates 180°
- May need to adjust the vertical orientation for the near future

Angular resolution chart

Angular resolution	0.25°	0.5°	1.0°
Max Scanning angle	100°	180°	180°
Max # of measure values	401	361	181

Justin Gibbs

Brandon Roberts

Team #19 Slide 37 of 43

Brandon Roberts

Slide 37 of 43

Brandon Roberts

Brandon Roberts

Team #19 Slide 37 of 43

Brandon Roberts

Slide 37 of 43

Brandon Roberts

Team #19 Slide 37 of 43

Brandon Roberts

PSBI

Team #19 Slide 37 of 43

Brandon Roberts

Team #19 Slide 37 of 43

Brandon Roberts

PSBI

Brandon Roberts

Planning for the Future

Team #19 Slide 38 of 43

Brandon Roberts

L NI	D 10	C1 1			
ask Name 👻	Duration -	Start -	Finish -	W T F S S M T W T F S	S S M T W T F S S M T
Marking Mechanism	8.7 mons	Thu 9/3/15	Sun 5/1/16		
Conceptual Design	35 days	Thu 9/3/15	Wed 10/21/15		
Define Problem	7 days	Mon 9/7/15	Tue 9/15/15		
Initial Meeting	1 day	Mon 9/7/15	Mon 9/7/15	Team	
Review Project Proposal	5 days	Mon 9/7/15	Fri 9/11/15	Team	
Meeting with Sponsor	1 day	Tue 9/15/15	Tue 9/15/15	Team	
Customer Needs	9 days	Tue 9/15/15	Fri 9/25/15		
Sponsor Survey	3 days	Wed 9/16/15	Fri 9/18/15	KH,JG	
Gather Information	17 days	Mon 9/7/15	Tue 9/29/15		
Research of Similar Robots	15 days	Mon 9/7/15	Fri 9/25/15	JG,BR	
Trip to Construction Site	1 day	Fri 9/18/15	Fri 9/18/15	JG,KH,DP	
House of Quality	7 days	Mon 9/21/15	Tue 9/29/15	JG,KH,BR	
Concept Generation	6 days	Fri 9/25/15	Fri 10/2/15		
Individual Brainstorming	6 days	Fri 9/25/15	Fri 10/2/15	Team	
Concept Selection	9 days	Wed 9/30/15	Mon 10/12/15		
Morphological Chart	4 days	Wed 9/30/15	Mon 10/5/15	JG	
Pugh Matrix	5 days	Tue 10/6/15	Mon 10/12/15	JG	
Iteration of Conceptual Design	15 days	Mon 10/12/15	Fri 10/30/15	Team	
Product Architecture	23 days	Fri 10/30/15	Mon 11/30/15		
Determine Final Concept	4 days	Fri 10/30/15	Tue 11/3/15		
Determine Movement Methods	4 days	Fri 10/30/15	Tue 11/3/15	JG,BR,	кн
Finalize Design	, 5 days	Tue 11/3/15	Mon 11/9/15	Tea	am
Make CAD Drawings	7 days	Mon 11/9/15	Tue 11/17/15		
Find Exact Dimensions	6 days	Tue 11/10/15	Tue 11/17/15		JG,BR,KH
Calculate Physical Needs	5 days	Tue 11/17/15	Mon 11/23/15		-
Motor Power	5 days	Tue 11/17/15	Mon 11/23/15		JG,BR
Material Strengths	5 days	Tue 11/17/15	Mon 11/23/15		JG,BR,KH
Guide Rail, Lead Screw	5 days	Tue 11/17/15	Mon 11/23/15		JG,BR,KH
Select Components	3 days	Thu 11/19/15	Mon 11/23/15		JG,BR,KH
Create Bill of Materials	3 days	Mon 11/23/15	Wed 11/25/15		Team
▲ LiDar	11 days	Mon 11/16/15	Mon 11/30/15	F	
Initial Design for Moving	6 days	Mon 11/16/15	Mon 11/23/15	-	JG,BR
Finalized LiDar Moving Design	6 days	Mon 11/23/15	Mon 11/30/15	_	JG,BR
Verification and Testing	41 days	Fri 11/20/15	Fri 1/15/16		
Order Parts	6 days	Fri 11/20/15	Fri 11/27/15		КН
Build Mechanism	10 days	Mon 11/30/15	Fri 12/11/15		Team
	26 days	Eri 12/11/15	Fri 1/15/16		Team
Tecting (On and Ott Site)	20 udys	111 12/11/13	111/13/10		- Calif

Construction Marking Robot

Team #19 Slide 39 of 43

Product Architecture	23 days	Fri 10/30/15	Mon 11/30/15
Determine Final Concept	4 days	Fri 10/30/15	Tue 11/3/15
Determine Movement Methods	4 days	Fri 10/30/15	Tue 11/3/15
Finalize Design	5 days	Tue 11/3/15	Mon 11/9/15
Make CAD Drawings	7 days	Mon 11/9/15	Tue 11/17/15
Find Exact Dimensions	6 days	Tue 11/10/15	Tue 11/17/15
Calculate Physical Needs	5 days	Tue 11/17/15	Mon 11/23/15
Motor Power	5 days	Tue 11/17/15	Mon 11/23/15
Material Strengths	5 days	Tue 11/17/15	Mon 11/23/15
Guide Rail, Lead Screw Options/Sizes	5 days	Tue 11/17/15	Mon 11/23/15
Select Components	3 days	Thu 11/19/15	Mon 11/23/15
Create Bill of Materials	3 days	Mon 11/23/15	Wed 11/25/15
⊿ LiDar	11 days	Mon 11/16/15	Mon 11/30/15
Initial Design for Moving	6 days	Mon 11/16/15	Mon 11/23/15
Finalized LiDar Moving Design	6 days	Mon 11/23/15	Mon 11/30/15

Team #19 Slide 40 of 43

Product Architecture	23 days	Fri 10/30/15	Mon 11/30/15
Determine Final Concept	4 days	Fri 10/30/15	Tue 11/3/15
Determine Movement Methods	4 days	Fri 10/30/15	Tue 11/3/15
Finalize Design	5 days	Tue 11/3/15	Mon 11/9/15
Make CAD Drawings	7 days	Mon 11/9/15	Tue 11/17/15
Find Exact Dimensions	6 days	Tue 11/10/15	Tue 11/17/15
A Calculate Physical Needs	5 days	Tue 11/17/15	Mon 11/23/15
Motor Power	5 days	Tue 11/17/15	Mon 11/23/15
Material Strengths	5 days	Tue 11/17/15	Mon 11/23/15
Guide Rail, Lead Screw Options/Sizes	5 days	Tue 11/17/15	Mon 11/23/15
Select Components	3 days	Thu 11/19/15	Mon 11/23/15
Create Bill of Materials	3 days	Mon 11/23/15	Wed 11/25/15
⊿ LiDar	11 days	Mon 11/16/15	Mon 11/30/15
Initial Design for Moving	6 days	Mon 11/16/15	Mon 11/23/15
Finalized LiDar Moving Design	6 days	Mon 11/23/15	Mon 11/30/15

Team #19 Slide 40 of 43

Product Architecture	23 days	Fri 10/30/15	Mon 11/30/15
Determine Final Concept	4 days	Fri 10/30/15	Tue 11/3/15
Determine Movement Methods	4 days	Fri 10/30/15	Tue 11/3/15
Finalize Design	5 days	Tue 11/3/15	Mon 11/9/15
Make CAD Drawings	7 days	Mon 11/9/15	Tue 11/17/15
Find Exact Dimensions	6 days	Tue 11/10/15	Tue 11/17/15
Calculate Physical Needs	5 days	Tue 11/17/15	Mon 11/23/15
Motor Power	5 days	Tue 11/17/15	Mon 11/23/15
Material Strengths	5 days	Tue 11/17/15	Mon 11/23/15
Guide Rail, Lead Screw Options/Sizes	5 days	Tue 11/17/15	Mon 11/23/15
Select Components	3 days	Thu 11/19/15	Mon 11/23/15
Create Bill of Materials	3 days	Mon 11/23/15	Wed 11/25/15
⊿ LiDar	11 days	Mon 11/16/15	Mon 11/30/15
Initial Design for Moving	6 days	Mon 11/16/15	Mon 11/23/15
Finalized LiDar Moving Design	6 days	Mon 11/23/15	Mon 11/30/15

Team #19 Slide 40 of 43

A Product Architecture	23 days	Fri 10/30/15	Mon 11/30/15
Determine Final Concept	4 days	Fri 10/30/15	Tue 11/3/15
Determine Movement Methods	4 days	Fri 10/30/15	Tue 11/3/15
Finalize Design	5 days	Tue 11/3/15	Mon 11/9/15
Make CAD Drawings	7 days	Mon 11/9/15	Tue 11/17/15
Find Exact Dimensions	6 days	Tue 11/10/15	Tue 11/17/15
Calculate Physical Needs	5 days	Tue 11/17/15	Mon 11/23/15
Motor Power	5 days	Tue 11/17/15	Mon 11/23/15
Material Strengths	5 days	Tue 11/17/15	Mon 11/23/15
Guide Rail, Lead Screw Options/Sizes	5 days	Tue 11/17/15	Mon 11/23/15
Select Components	3 days	Thu 11/19/15	Mon 11/23/15
Create Bill of Materials	3 days	Mon 11/23/15	Wed 11/25/15
⊿ LiDar	11 days	Mon 11/16/15	Mon 11/30/15
Initial Design for Moving	6 days	Mon 11/16/15	Mon 11/23/15
Finalized LiDar Moving Design	6 days	Mon 11/23/15	Mon 11/30/15

Team #19 Slide 40 of 43

Gantt Chart – Programming

Task Name	Duration		
		Start 👻	Finish 👻
Programming	94 days	Wed 9/9/15	Fri 1/15/16
▲ Locomotion	61 days	Wed 9/9/15	Tue 12/1/15
QnX Code Research	49 days	Wed 9/9/15	Fri 11/13/15
Turn on LED to represent marking	12 days	Fri 11/13/15	Mon 11/30/15
Make Robot Move	7 days	Mon 11/23/15	Tue 12/1/15
Microprocessor	21 days	Thu 10/29/15	Wed 11/25/15
Research Options	10 days	Thu 10/29/15	Tue 11/10/15
Raspbery Pi Work	4 days	Tue 11/10/15	Fri 11/13/15
Communication with Pioneer	4 days	Fri 11/20/15	Wed 11/25/15
Sourcing for Parts	4 days	Tue 11/10/15	Fri 11/13/15
Extraction of CAD Data	69 days	Wed 9/9/15	Fri 12/11/15
Find Software changing CAD to coordinates	43 days	Wed 9/9/15	Thu 11/5/15
MATLAB program for txt file	13 days	Thu 11/5/15	Mon 11/23/15
Task Assignments	28 days	Wed 11/4/15	Fri 12/11/15
Path Planning	28 days	Wed 11/4/15	Fri 12/11/15
Integration with Robotic Total Static	n 94 days	Wed 9/9/15	Fri 1/15/16
Research	54 days	Wed 9/9/15	Fri 11/20/15
Gather API			

Team #19 Slide 41 of 43

Schedule

- Marking Device
 - Select components
 - Create a bill of materials and order parts
 - Begin construction of marking device
- Programming
 - Continue with movement capabilities
 - Connect Raspberry Pi to Pioneer
 - Complete code with functions for Pioneer
 - Begin work with LiDar

Questions?

Team #19 Slide 43 of 43

