Design and Development of an Autonomous Underwater Vehicle

Midterm II Presentation Team 23 November 19th, 2015

Advisors: Dr. Jonathan Clark Dr. Bruce Harvey

Sponsors: Dr. Shih

Team Members: Max Austin John Nicholson Corey Cavalli Ross Richardson Erik Olson Jordan Clein

Presentation Outline

- Review of Background Information
 - Competition: constraints and challenges
 - Project: what we inherited
- The Project
 - Past: tests
 - Present: where we are now
 - Future: what we're going to accomplish and when

Competition Background

- The 19th Annual International Robosub Competition
 - Advance development of Autonomous Vehicles
 - Perform realistic task
- Competition Challenges
 - Interact with color buoys
 - Navigate through a gate
 - Drop markers
 - Fire torpedoes through target
 - Grab and move an object
 - Travel toward pinger
 - Specific competition rules released in December

Figure 1: Obstacles at 2015 Robosub Competition

Major Competition Constraints

	Scoring
AUV Weight > 125 lbs	Disqualified
125 lbs ≥ AUV Weight > 84	Loss of 250 + 5(lb – 125)
84 lbs ≥ AUV Weight > 48.5	Bonus of 2(84 – lb)
AUV Weight ≤ 48.5 lbs	Bonus of 80 + (48.5 – lb)

Table 1: Competition weight constraints

Geometry Constraints

- AUV must be no larger than 6' x 3' x 3'
- Buoyancy
 - Buoyant to 0.5% when kill switch activated
- Weight Constraints
 - Less than 125 lbs

Project Background

Arduinos and Zotac

- The Current AUV
 - Designed and Built in 2013
 - Weighs about 80 lbs without electronics
 - Contains 22.5 lbs in weights within the hull
- Components
 - 6 Seabotix thrusters
 - Zotac Mini Computer
 - Arduino Mega
 - 2 Arduino Uno's
 - 3 Canakit Motor Controllers
 - 9 DOF IMU
 - 2 Cameras

Figure 2: 2015 Robosub

Current Team Organization

Figure 3: Team Structure

House of Quality

			Engineering Characteristics												
Legend:	Units			lbf	lbf	N/A	lbf	N/A	N/A	N/A	N/A	N/A			
• 1: Low	Customer Requirements		sions	ncy	Ŧ	ial		ß		onics Housing	do Propulsion n	er mechanism			
9: High			Dimer	Buoya	Weigh	Mater	Thrus	Sensir	Frame	Electr	Torpe syster	Gripp			
	Cost - \$2000 budget	5	1			1	1	9		3		1			
EC's of High Importance:	Accessablity - easy to access components	4	3		3				3	9					
0	dimensions do not exceed 6x3x3 feet	3	9	9	9				3	3		3			
1 Sensing	Durability	4				9			3	3	1	1			
1. Jensing	Shoot a target with torpedoes	4						3	3		9				
	Place markers in bins	4						3				9			
2. Electronics Housing	Waterproof	5				3			1	9					
	Detect frequencies between 20-45kHz	5						9							
3. Gripper Mechanism	Navigation through obstacles	5	3	3	1		9	9	1	1					
	Do not harm testers	5			3	1	1	1	1	3	3	3			
	Raw Score	59	42	59	61	55	164	60	137	55	69				
	Relative Weigh	8%	6%	8%	8%	7%	22%	8%	18%	7%	9%				
	Rank Order	r						1		2		3			

Speaker: Corey Cavalli

Table 1: House of Quality Matrix

Testing

- Buoyancy and waterproof pool testing
 - Vehicle over buoyant by 15 lb
- Dry testing of thrusters and motor controllers
 - All thrusters and motor controllers working properly
- Preliminary testing of navigation software using object visualization to control thrusters

Figure 4: Pool testing at morcom aquatics center

Team Accomplishments

•Camera update

- Object Detection Working
- IMU outputs data

•Thruster update

- Joint effort between teams to work thrusters
- Replaced motor controller- All six thrusters now operational
- Thrusters adjust speed to direct sub towards target

Figure 5: Orientation and Color Identification

Hull Modification

- Modifying the previous year's design by reducing the height by 1.75 in
 - Reduced buoyancy force and weight
- Maintain aluminum hull
 - Heat dissipation decreases with volume

Fig 6: CAD of hull design

Zotac Implementation

- Main CPU
 - Recently established communication to arduino
- Unsuccessful with makeshift battery
- Zotac Battery Output Power
 - Powers Arduino Uno and Mega at 5V each
 - Powers IMU
 - Battery Specifications:
 - Capacity: 4000mAh
 - Input: DC16.8V/1.5A
 - Output: 16V and 19V DC switch

Figure 7: Zotac intel core i3 used in sub

Microcontroller

- Programmed new Arduino Uno to control air actuation for torpedoes and gripper
- Camera sends hi/lo signal to arduino, activating the air actuation valves, releasing pressure
- Test code completed for subsystems
- Awaiting air tank

Figure 8: Arduino Uno

Torpedoes

- Design Goals
 - Must fit into current tubing
 - Buoyancy must be only slightly positive
 - Low friction between tubing and torpedo
 - Low drag in the water
 - Stable flight in the water

Torpedoes

Air Supply

Compressed air tank (3000 psi)
Shooting pressure = 100 psi

- •New Torpedo
 - Plaster mold of 3D printed torpedo model
 - Rubber torpedo to replace ABS
 - Hollow to add weight

Figure 10: 3-D printed torpedo

Gripper Mechanism

- Pneumatic Actuator: Airtac HFY 16
 - Body size: 30.6mm x 44.6mm x 15mm
 - Gripping angle: $10^{\circ} \le \theta \le 30^{\circ}$
 - Multiple installation locations

Figure 11: Airtac pneumatic actuator

Figure 12: Mechanical Specifications

Future Objectives

- Implement wireless communication to zotac
 - Currently using ethernet through waterproof port
- Complete Mechanical Design
 - Hull cutting and lid fitting
 - Cast rubber torpedo in plaster mold
 - Gripper
 - Attach pneumatic actuators
 - Build gripping hands
- Competition Navigation
 - Develop functions for each movement and task
 - Combine functions into appropriate algorithm

Gantt Chart

	Task Name 👻	Duratio 🗸	Start 🗸	Finish	 Predecesso	10/11	10/18	10/25	Noven 11/1	nber 11/8	11/15 1	1/22	Dece 11/29	mber 12/6	12/13
1	Troubleshoot Subsystems	49 days	Mon 10/12/15	Fri 12/11/15		-					1				
2	⊿ Hull	9.8 wks	Mon 10/12/15	Fri 12/11/15		-									
	Math/Testing	1 wk	Mon 10/12/15	Fri 10/16/15			-		1						
4	Initial designs	8 days	Mon 10/12/15	Wed 10/21/15		i									8
5	CAD current sub	17 days	Mon 10/12/15	Sun 11/1/15		1			B1		-				
6	CAD modified hull	3.4 wks	Mon 11/2/15	Fri 11/20/15	5,3				1		h				
7	Materials/Order parts	8 days	Mon 11/23/15	Wed 12/2/15	6						1				
8	Assembly	8 days	Thu 12/3/15	Fri 12/11/15	7,5								**		
9	✓ Image processing	9.8 wks	Mon 10/12/15	Fri 12/11/15		-							245		a 1
10	Orientation ID	2.4 wks	Mon 10/12/15	Mon 10/26/15		1		-			-	-			
11	Color ID	5.2 wks	Sun 10/25/15	Wed 11/25/15								b			
12	Shape ID	3.8 wks	Tue 11/3/15	Wed 11/25/15					1						
13	Debugging	2.6 wks	Thu 11/26/15	Fri 12/11/15	12,10,11						1	1			
14	Navigation	9.8 wks	Mon 10/12/15	Fri 12/11/15		-					-			_	
15	Debug thrusters	2.6 wks	Mon 10/12/15	Tue 10/27/15				-			-	1			
16	IMU control	1 wk	Wed 10/28/15	Tue 11/3/15					-			-			
17	Submerge current AUV	1 day	Wed 11/18/15	Wed 11/18/15											
18	Depth sensor	1 wk	Thu 11/19/15	Wed 11/25/15								•			
19	Navigation - Debug	2.6 wks	Thu 11/26/15	Fri 12/11/15	15,16,18							*			
20	Redesign Subsystems	50 days	Mon 10/12/15	Mon 12/14/15							-				
21	Gripper/Torpedoes	50 days	Mon 10/12/15	Mon 12/14/15		-									
22	CAD torpedo designs	17 days	Mon 10/12/15	Sat 10/31/15					8		-				
23	CAD claw	6 days	Fri 11/13/15	Wed 11/18/15											
24	Order parts	9 days	Thu 11/19/15	Tue 12/1/15	22,23						Ť				
25	Assembly	4 days	Wed 12/2/15	Sat 12/5/15	24								t i	1	
26	Attach and Integrate	6 days	Mon 12/7/15	Mon 12/14/15	25									í	
27	Re-Submerge	2 days	Tue 12/15/15	Wed 12/16/15	9,14,20										*

Speaker: Corey Cavalli

Figure 13: Allocation of time on project objectives for fall 2015

Risks and Challenges

Risks

- Water damage when testing
- Frying electronics, overheating
- Safety (electricity, weight)

Challenges

- Time management
- Input and output compatibility in code
- Integration of subsystems
- Organization and efficiency of a 10 member team

Conclusion

- Completed:
 - Color and orientation identification
 - Thrusters tested and functional out of water
 - CAD of modified hull
 - Torpedo design 3D printed

- Upcoming:
 - Repair Zotac mini computer
 - Order parts:
 - Zotac battery, aluminum, compressed air tank
 - Pool test to observe mobility
 - Fabrication of modified hull
 - Air actuation implementation and testing

References

1. "The Competition of Competition Rules." The New Systems Competition (2003): 178-206. Robosub.org. TRANSDEC Facility. Web.

2. "Appendix A: MemWorX User Manual." Peters/Membrane Process Design Membrane Process Design Using Residue Curve Maps (2011): 183-99. Web.

Questions?