Midterm Presentation HANScycle: Reciprocating Lever Transmission

Team 8:

Darren Beckford Nick Khayata Ali Pustelniac Kyle Roddenberry

Sponsor: Gordon Hansen

Advisor: Keith Larson

Instructors: Dr. Nikhil Gupta & Dr. Chiang Shih

Introduction

Project Goal:

- Use last year's progress to build a working HANScycle prototype using the Reciprocating Lever Transmission
- Constraints:
 - Bicycle must be designed for 26" wheels
 - Bicycle must fit into a 26"x26"x10" storage box
 - Utilize crank arms up to 12" with an arc no greater than 100°
 - Utilize existing prototype
- Budget: \$2,000

Presenter: Ali Pustelniac

Main Objectives

Remodel existing Reciprocating Lever Transmission (RLT) prototype

- Test prototype for various comparison data:
 - Various crank arm lengths
 - Compare with traditional bicycle
- Be able to fit a disassembled bicycle into a 26"x26"x10" storage box

Last Year's Project Progress

Figure 1: Last Year's HANScycle Team

Presenter: Ali Pustelniac

Requirements:

- Proof of torque increase
- · Proof of decreased joint wear
- · Comparable cadence rate
- Select optimal BTC location

Testing

Results:

· Power and torque generation is increased

4

- · Cadence rate is faster
- RLT and frame need refinement

Conclusion

Success as proof of concept

Design needs to be refined:

- Better RLT placement
- Improve axle design

Component Research

- Bearing selection
- · Ratchet and pawl alternative

Sponsor's Project Needs

Sponsor Needs	Requirements	Approach		
Working Reciprocating Lever Transmission	Improve Shaft Strength	Test Various Materials and Material Processes		
Higher Torque Output / New Crank Design	Determine Crank Arm Length	Test Torque Output at Various Crank Arm Lengths		
Testing Data	Torque, Power, Cadence, Speed, Time	Test Prototype and Compare with Traditional Bicycle		

5

Presenter: Ali Pustelniac

House of Quality

			$\langle \rangle$	$\langle \rangle$					
		\sim	>	⊦>∕-		->			
		<>	<>	<>	<>	<>			
	\frown	\frown	\frown	Component	Material	Taraua	$ \frown$		
	Wheel Size	Weight	RLT	Choice	Choice	Torque Output	Frame Design	Total	Rank
Ergonomics	4	6	9	10	2		10	41	2
Cost	1	1	8	8	9		2	29	4
Performance	6	7	8	6	7	10	4	48	1
Size	9	8	2	1	1	5	8	34	3
Wheel Size	10	2				4	5	21	5
Reliability			6	3	9			18	6
Total	30	24	33	28	28	19	29		
Rank	2	6		4	5	7	3		

6

Figure 2: House of Quality (HOQ)

Presenter: Ali Pustelniac

Original RLT vs Simplified RLT

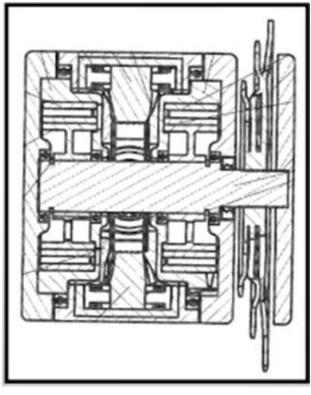


Figure 3: Patented RLT Design

105.35mm

7

Figure 4: Simplified RLT Redesign

Last Year's RLT Design

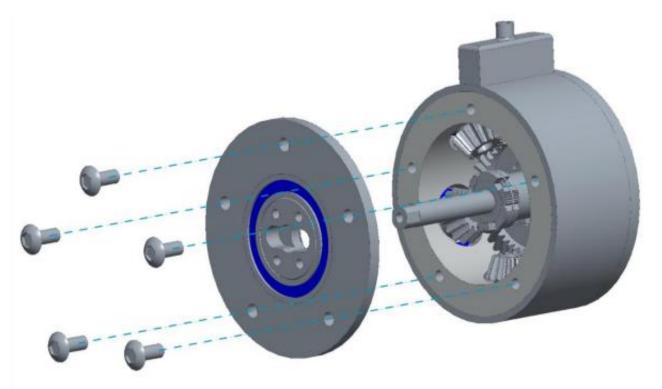


Figure 5: RLT Exploded View

Presenter: Nick Khayata

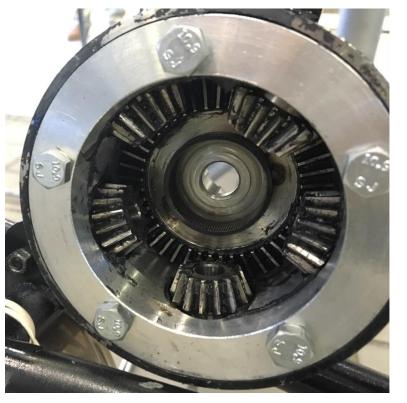
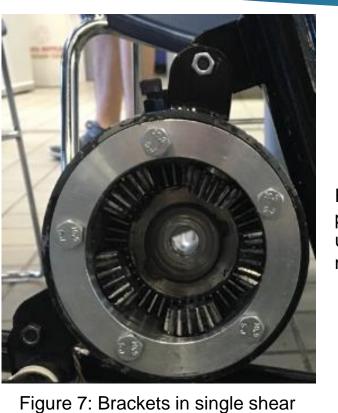


Figure 6: Current RLT Internal Components


Reverse Engineering

Bike frame and seating position more fit for mountain bike than a cruiser.

- RLT brackets flex under load.
- Crank arm fastener holes do not line up.
- Crank arm keys beginning to shear.
- Shaft inside RLT made of multiple materials.

10

Failure Analysis - RLT

RLT brackets had only one point of contact and underwent a bending moment.

Figure 8: Brackets in double shear

New brackets were designed, cut out by waterjet, and welded onto the RLT.

4 in

Failure Analysis - Crank Arms

Crank arm keys began to shear.

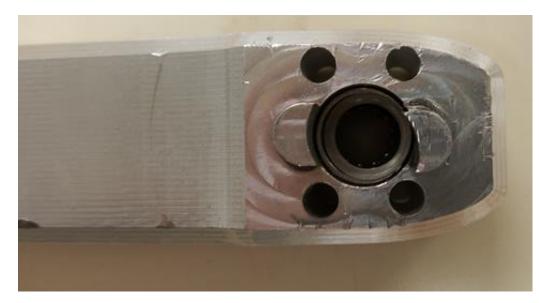


Figure 9: Top View of Sheared Key

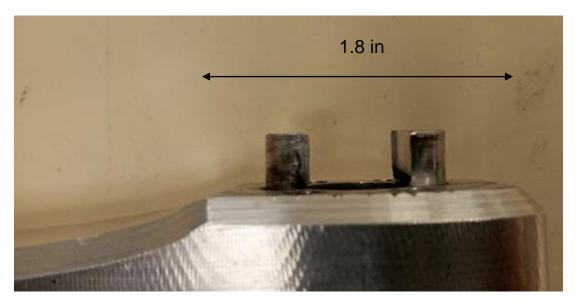


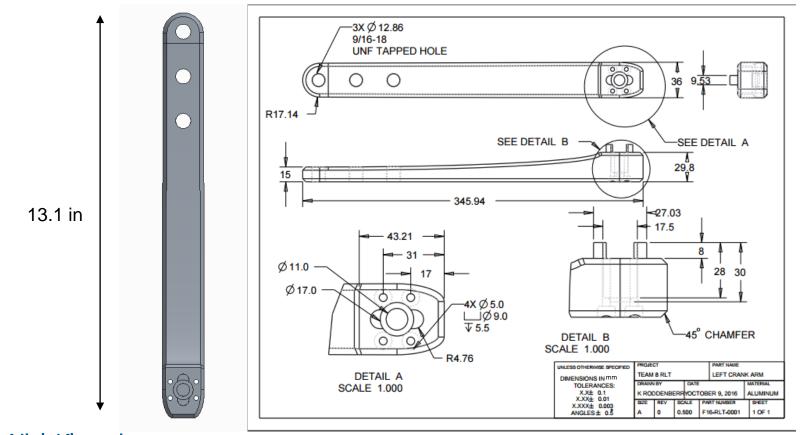
Figure 10: Side View of Sheared Key

12

Failure Analysis - Output shaft

Figure 11: Traditional Bike output shaft (top) vs RLT Output Shaft (bottom)

The RLT output shaft was originally made of mild steel which failed. The second rendition (bottom) was made of a hardened steel shaft (smaller diameter) welded to the mild steel center shaft (larger diameter).


The first attempt completely failed. The second attempt (bottom) is better but should be made from one material.

Conceptual Designs

- Possible Solutions to Crank Arm Failure:
 - Press Fit Steel Keys
 - Properly Machine Crank Arms with Aligning Holes
 - Use Bolts That Fit and Are a Higher Grade
 - Use a Different Material or Complete Redesign
- New Design Components
 - Multiple Holes in Crank Arms for Testing Different Lengths

13

Crank Arm Redesign

Presenter: Nick Khayata

Figure 12: Crank Arm part (left) and drawing (right)

Preliminary Budget

#	Part	Material Vendor		Cost	Quantity	Subtotal
1	Shaft	Titanium	Online Metals	Online Metals 35.14 1		35.14
2	Crank Arms	6061-T6511 Aluminum	Speedy Metals	25.72	2	51.44
3	One Way Bearing	Chrome Steel 52100	Boca Bearings	34.95	2	69.90
	Total					
	Budget					
	Remaining Budget					

Future Plans

Modify the crank arms

- Fix mounting issues
- Drill holes in the crank arms for adjusting

Remodel the one-way clutch

- Allow for backwards motion
- Buy the appropriate steel
- Test prototype
 - Test the working prototype for data
 - Use kinetic road machine

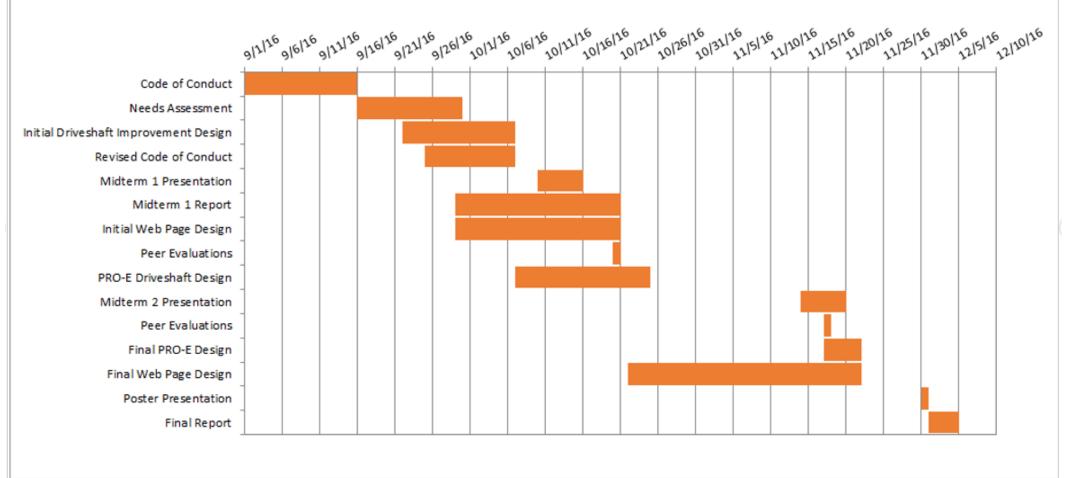


Figure 13: Kinetic Road Machine

Presenter: Darren Beckford

17

Gantt Chart/ Project Schedule

Conclusion

Main Objectives

- Project/Sponsor needs
- Produce a working prototype

Reverse Engineering

- Design, ordering, simplifying
- Crank arms, shafts, one way clutch

Testing

- Assemble Hans Cycle
 - Test for Torque output, power, top speed

18

Use kinetic testing machine

References

[1] C. Holland, "Needs Assessment: Team 20: HANS Cycles.," 2015. [Online]. Available: Print.

[2] G. H. Hansen, "Reciprocating Lever Transmission.," Patent US20130205928 A1, 2013.

19

[3] O. Metals, "titanium round alloys , 6AI-4V, 6AI-4V ELI, grade 2 in small quantities at OnlineMetals.com," Online Metals. [Online]. Available: http://www.onlinemetals.com/merchant.cfm?id=266&step=2&top_cat=1353. Accessed: Oct. 10, 2016.

[4] S. Metals, "Aluminum," 2006. [Online]. Available: http://www.speedymetals.com/c-8342-aluminum.aspx. Accessed: Oct. 10, 2016.

[5] B. Bearings, "Boca Bearings," http://www.bocabearings.com/, 2004. [Online]. Available: http://www.bocabearings.com/bearing-inventory/One-Way-Bearings/19159/20x26x26-FCB20. Accessed: Oct. 10, 2016.

Questions?