Midterm Presentation 2 HANScycle: Reciprocating Lever Transmission

Team 8:

Darren Beckford Nick Khayata Ali Pustelniac Kyle Roddenberry

Sponsor: Gordon Hansen

Advisor: Keith Larson

Instructors: Dr. Nikhil Gupta & Dr. Chiang Shih

Introduction

Problem Statement:

"A traditional bicycle is difficult to ride up hill due to its limited torque output and can also be damaging to a rider's joints."

Main Objectives

- Optimize the existing Reciprocating Lever Transmission (RLT) prototype
- Test prototype for comparison data:
 - Various crank arm lengths
 - Compare with Traditional bicycle

Project Scope

Constraints:

- Bicycle must be designed for 26" wheels
- Bicycle must fit into a 26"x26"x10" storage box
- Utilize crank arms up to 12" with an arc no greater than 100°

- Utilize existing prototype
- Budget: \$2,000

Sponsor's Project Needs

Sponsor Needs	Requirements	Approach
Working Reciprocating Lever Transmission	Optimize and Replace Broken Components	Test and Research Various Materials and Components
Higher Torque Output	Determine Crank Arm Length	Test Torque Output at Various Crank Arm Lengths
Testing Data	Torque, Power, Cadence, Speed, Time	Test Prototype and Compare with Traditional Bicycle

Recap

Reverse Engineering:

The RLT and bike were taken apart and analyzed

Failure Analysis

- Crank arm keys began to shear
- RLT mounting tabs were bending due to only one point of contact
- RLT output shaft made of two materials
- Ratchet and pawl teeth grinding
- Crank arm mounting holes didn't line up
- Crank arm bolts sheared

Presenter: Nick Khayata

Project Planning and Changes

Since last presentation

- Crank arms tapped to multiple lengths
- One way bearing sourced
- New crank arms designed
- Higher grade bolts sourced

Future

- Purchase materials and components
- Machine and assemble new crank arms
- Implement one way bearing
- Testing at full potential

6

Presenter: Nick Khayata

1.181 in or 30 mm

Crank Arms

- New crank arms with adjusting holes for data
- Improved current crank arms (press keys, new bolts)
- Impeding progress on testing

Crank Arms Cont.

- Alternate designed crank arms
- Steel and aluminum vs all steel
- Just for data (not final design)

One Way Bearing

- Satisfies one main project goal
- Shaft fits inside keyway etc.
- Should allow bike to roll backwards
- Provides torque one way

1.181 in or 30 mm

4.75 in

6.25 in

8620 vs 4130 Shaft Material

8620 Steel

- Known for case hardening
- Easier to machine
- High surface wear resistance
- Much stronger once hardened
- Used for shafts, pins, gears, ratchets

4130 Steel

- Known for through hardening
- Slightly stronger due to higher carbon content
- Easily heat treated
- Used for aircraft engine mounts, valve bodies and pumps, auto racing

Updated Budget

#	Part	Material	Vendor	Cost	Quantity	Subtotal
1	One-way Bearing	steel	VXB bearings.com	\$24.95	1	\$24.95
2	rachet and pawl	plastic/steel	Trilton cycles (UK)	\$90.00	2	\$180.00
3	square tube (5ft)	steel	speedy metals	\$5.95	1	\$5.95
4	round bar (shaft)	8620 steel	speedy metals	\$6.89	1	\$6.89
5	steel plate	A-36 steel	speedy metals	\$29.53	1	\$29.53
6	square bar	A-36 steel	speedy metals	\$21.16	1	\$21.16
7	socket screws	steel	Mcmaster.com	\$9.82	1	\$9.82
					Total	\$278.3
					Remaining Budget	\$1,721.7

11

Presenter: Darren Beckford

Test Data

-	Traditiona	al Bicycle	•	HANScycle						
Length (in)	Power (W) Average/Maximum	Cadence (rpm) Average/Maximum	Speed (mph) Average/Maximum	Length (in)	Power (W) Average/Maximum	Cadence (rpm) Average/Maximum	Speed (mph) Average/Maximum			
7	212/668	80/160 17.6/29.2		9	18/28	16/29	5.0/6.4			
				10.5	20/31	23/32	5.4/6.7			
				12	18/29	17/30	5.2/6.5			

Presenter: Kyle Roddenberry

Data Analysis

 The traditional bicycle had a maximum speed of over 4 times that of the HANScycle. 13

- > This is partially attributed to internal slippage of the RLT
- The 10.5 inch crank produced the best results
 - Due to the additional torque on the 12 inch crank
 - It also had the best ergonomics and maneuverability
- The target data is equal to or greater than the traditional bicycle
 - 212 Watts
 - ▶ 17.6 mph

Gantt Chart

Test News	01-10-1	E-10-1	Olation	Cct			Nov				Dec				
	Start Date	End Date	Status	Dur	Oct 9	Oct 16	Oct 23	Oct 30	Nov 6	Nov 13	Nov 20	Nov	27 Dec 4	Dec 11	Dec 18
					¢ Q	Q, 7									
Initial Analysis	09/04/16	09/26/16	Completed	17d											
Team member roles assigned	09/04/16	09/08/16	Completed	5d											
Prototype analyzed	09/04/16	09/26/16	Completed	17d	-										
Evaluation of last year's project progress	09/08/16	09/26/16	Completed	13d	ear's projec	ct progress									
Needs and goals established	09/08/16	09/20/16		9d											
Bicycle Components	09/30/16	10/31/16	In Progress	22d	-			Bicycle	e Component	5					
Assembly of current components	09/30/16	10/05/16	Completed	4d	embly of c	urrent compo	onents								
Initial prototype testing	10/06/16	10/10/16	Completed	3d	-Initial	prototype te	sting								
Component anaylsis	10/11/16	10/17/16	Completed	5d	-	Comp	onent anaylsis	;							
Data Analysis	10/18/16	10/19/16	Completed	2d		+ Da	ta Analysis								
Crank redesign	10/21/16	10/31/16	Completed	7d				Crank	redesign						
New Bicyle Components	11/01/16	12/02/16	In Progress	24d					-	 			New Bicyle	Components	
Finalized CAD drawings	11/01/16	11/10/16	Completed	8d					Fi	alized CAD	drawings		- · ·		
Material order	11/17/16	11/17/16	Not Started	1d				_			etorial order				
Component order	11/17/16	11/18/16	Not Started	2d											
Crank machining process	11/23/16	11/24/16	Not Started	2d	·						Component	order			
Component install	11/25/16	11/25/16	Not Started	1d								rank ma	chining process		
Prototype testing	11/28/16	11/30/16	Not Started	3d						1		Compor	ent install		
Data analysis and comparison	12/01/16	12/01/16	Not Started	1d						1			Prototype testir	9	
Trouble shooting and adjustments	12/02/16	12/02/16	Not Started	1d	-								Data analysis	and compar	ustments
					1					1			-		

Presenter: Kyle Roddenberry

Summary

Achievements

- Crank arms were tapped to 10.5 and 9 inches
- A keyed one way bearing has been sourced
- Chain ring adapter deigned to accept the one way bearing
- Two additional crank arms were designed
- High grade (class 12.9) bolts were sourced
- Decisions
 - The use of 8620 steel for the shaft
 - Use a 10.5 inch iteration of the crank
 - Implement a one way bearing

Summary

Future Plans

- Order all of the new material and components
- Replace broken components of the ratchet pawl system
- Machine a new crank arm design
- Install the new crank arms
- Install the keyed one way bearing
- Install the high grade bolts
- Test the completed design

Presenter: Kyle Roddenberry

Sources

- [1] C. Holland, "Needs Assessment: Team 20: HANS Cycles.," 2015. [Online]. Available: Print.
- [2] G. H. Hansen, "Reciprocating Lever Transmission.," Patent US20130205928 A1, 2013.
- [3] O. Metals, "titanium round alloys, 6AI-4V, 6AI-4V ELI, grade 2 in small quantities at OnlineMetals.com," Online Metals. [Online]. Available: http://www.onlinemetals.com/merchant.cfm?id=266&step=2&top_cat=1353. Accessed: Oct. 10, 2016.
- [4] S. Metals, "Aluminum," 2006. [Online]. Available: http://www.speedymetals.com/c-8342aluminum.aspx. Accessed: Oct. 10, 2016.
- [5] B. Bearings, "Boca Bearings," http://www.bocabearings.com/, 2004. [Online]. Available: http://www.bocabearings.com/bearing-inventory/One-Way-Bearings/19159/20x26x26-FCB20. Accessed: Oct. 10, 2016.

QUESTIONS?