Spring Final Presentation HANScycle: Reciprocating Lever Transmission Team 8:

Darren Beckford Nicholas Khayata Ali Pustelniac Kyle Roddenberry

Sponsor: Gordon Hansen

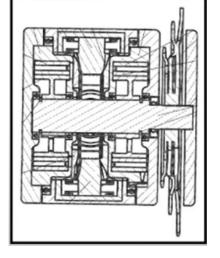
Advisor: Keith Larson

Instructor: Dr. Chiang Shih

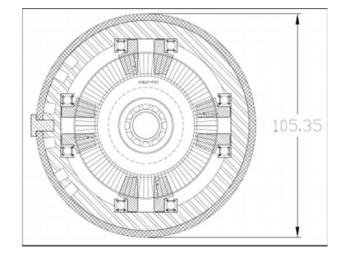
Introduction

- Project Goal:
 - Build a working HANSCycle prototype using the Reciprocating Lever Transmission

2

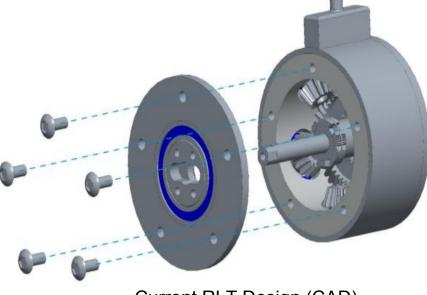

- Constraints:
 - Bicycle must be designed for 26" wheels
 - Bicycle must fit into a 26"x26"x10" storage box
 - Utilize crank arms no longer than 12" with arc no greater than 100°
 - Utilize existing prototype
- Budget: \$2,000

Presenter: Darren Beckford


3

Background On The RLT

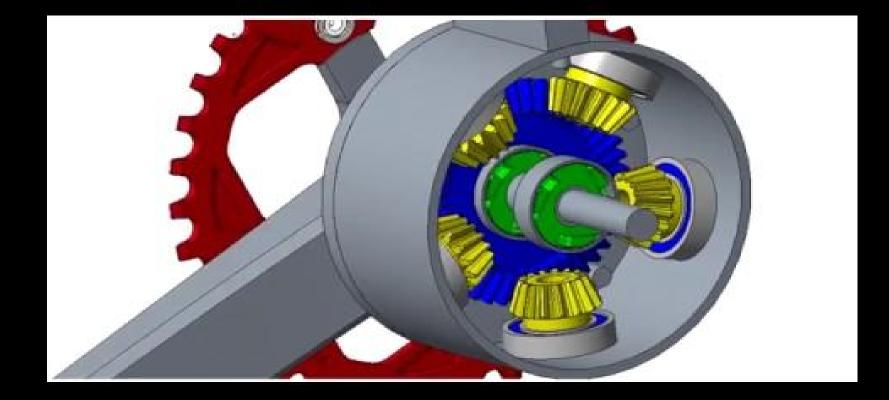
- Gordon Hansen (Sponsor) patented the RLT (Reciprocating Lever Transmission)
- Uses reciprocating motion to pedal
- Crank arms dependent on each other
- Produces power in both downward and upward strokes


Original RLT Design

Simplified RLT Design

Presenter: Darren Beckford

Reciprocating Lever Transmission

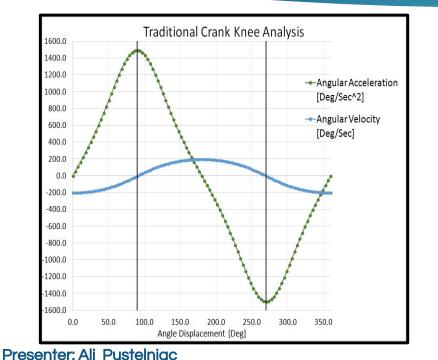

Current RLT Design (CAD)

4

Current RLT Design (Prototype)

Presenter: Darren Beckford

Motivation



Why this design?

- Dead spots at 90° and 270° on a traditional bike
 - Trouble riding uphill
- Natural pedal motion
- Minimize joint damage
- Everyday commuting
- Produces more power and torque

Knee Joint Damage

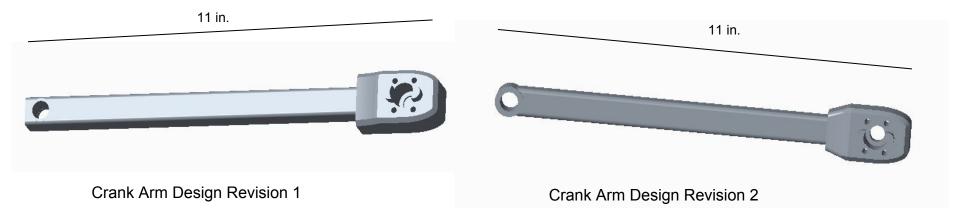
Dead spots cause internal forces on knee joints which can lead to:

- Permanent knee joint damage
- Inflammation and joint pain
- The knee is where the most damage is caused in cycling.

Team 8 Annual Goals

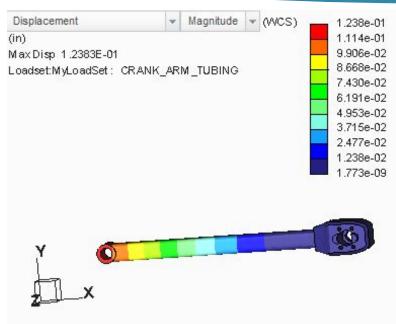
- Reverse engineer prototype from last year
- Test prototype for comparison data
 - Various crank arm lengths
 - ► Torque, Power, Cadence, Speed
 - Compare values with traditional bicycle
- Redesign components
- Focus on ergonomics
 - Handlebars
 - Seating

Failure Analysis


- Crank arms
 - Keys sheared
 - Bolts sheared
- Shaft misaligned
 - Needle bearing broke
 - Ratchet and pawl wear
- RLT brackets flexed under load
- Output shaft sheared

10

Presenter: Ali Pustelniac


Crank Arm Designs

11

Presenter: Nicholas Khayata

Crank Arm Analysis

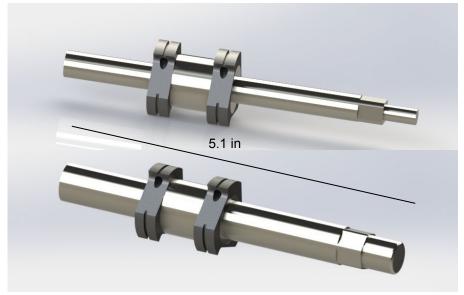
Materials: 1018 and 4130 Steel

Load: 250 lbf at the pedal location

12

- Deflection: 0.1238 in or 3.1 mm
- Weight: roughly 1.25 lbs

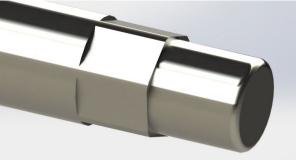
Presenter: Nicholas Khayata


Finished Crank Arms

11 in.

Presenter: Nicholas Khayata

New Output Shaft



Old output shaft (above) vs new output shaft (below)

- Significant Changes:
 - Shaft is 40% larger in diameter
 - Shaft to chainring adapter mating point is 50% larger.

14

- Material: 4340 300M alloy steel
- Hexagonal mating surface

Hexagonal section

Presenter: Nicholas Khayata

Finished Output Shaft

15

Presenter: Nicholas Khayata

Test Data

18

Preliminary Data

	RLT	Traditional Bike	
Average Power	22 W	33 W	
Average Speed	6.0 mph	6.0 mph	
Average Cadence	18 rpm	32 rpm	

-Further testing and comparison will be done next week

Presenter: Kyle Roddenberry

19

Updated Budget (Spring)

#	Part	Vendor	Cost	Quantity	Subtotal
1	1/2 in. Hexagon Broach	McMaster.com	\$241.89	1	\$241.89
2	M12-1.75 Class 10 flange locknut	McMaster.com	\$10.65	1	\$10.65
3	¼ in. diameter 3 ft. 8620 alloy steel rod	McMaster.com	\$22.68	1	\$22.68
4	14mm ID 18mm OD Oil-embedded sleeve bushings	McMaster.com	\$1.75	4	\$7.00
5	14mm ID 16mm OD Dry-running sleeve bearing with steel shell	McMaster.com	\$4.23	2	\$8.46
6	New OEM Components (handlebars, kickstand, seat, lights)	University Cycles	-	6	\$179.94
			·	Total	\$650.56
				Remaining Budget	\$714.72

Presenter: Kyle Roddenberry

Updated Final Progress

- Design and implement new crank arms
 - Steel design
 - Proper hole and key alignment
- Design and implement the new output shaft
 - Machined larger 16mm holes
 - Press fit oil-embedded bushings with 14mm ID
 - Used hexagon broach in order to maximize mating surface
 - Installed larger output shaft

Updated Final Progress

- Optimize ergonomics
 - New cruiser/urban style handlebars
 - Adjustable handlebar stem
 - New larger cruiser/urban style seat
- Accessorize
 - Legal lights
 - Kickstand
 - Horn

Future Suggestions

- Future Suggestions
 - Custom ratchet pawl design
 - Sprag clutch
 - Possible storage/cargo equipment
 - Increase gear ratio to improve performance

Acknowledgments

- We would like to say a special thanks to our...
 - Sponsor: Gordon Hansen
 - Advisor: Keith Larson
 - Instructor: Dr. Chiang Shih

References

[1] "Hexagon Broaches | Hex Dimensions Across Corners." DuMONT. Web. 23 Mar. 2017. http://dumont.com/our-broaches/> 24

- [2] G. H. Hansen, "Reciprocating Lever Transmission.," Patent US20130205928 A1, 2013.
- [3] "McMaster-Carr." McMaster-Carr. Web. <https://www.mcmaster.com/>
- [4] SUB1.5-4515." KHK-USA. N.p., n.d. Web. 20 Mar. 2017.
 https://www.khkgears.us/catalog/product/SUB1.5-4515>.
- ▶ [5] Web. 26 Mar. 2017. < http://www.bicycling.com/sites/bicycling.com/files/posture-main.jpg>.

Presenter: Kyle Roddenberry

Questions?