Spring Midterm 2 Presentation HANScycle: Reciprocating Lever Transmission

Team 8:

Darren Beckford Nicholas Khayata Ali Pustelniac Kyle Roddenberry

Sponsor: Gordon Hansen

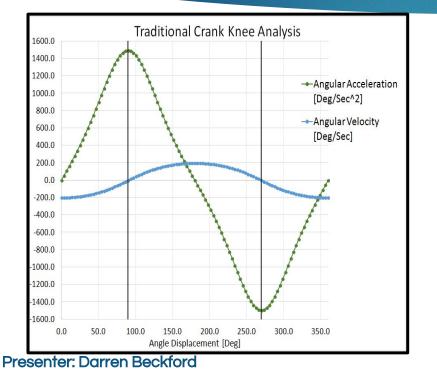
Advisor: Keith Larson

Instructors: Dr. Chiang Shih

Introduction

- Project Goal:
 - Build a working HANScycle prototype using the Reciprocating Lever Transmission

- Constraints:
 - Bicycle must be designed for 26" wheels
 - Bicycle must fit into a 26"x26"x10" storage box
 - Utilize crank arms no longer than 12" with arc no greater than 100°
 - Utilize existing prototype
- Budget: \$2,000


Motivation/Background

Why this design?

- Trouble riding uphill
- Everyday commuting
- Better pedal motion
- Produces more power and torque
- Dead spots at 90° on a traditional bike
- Minimize joint damage

Knee Joint Damage

Dead spots causes internal forces on knee joints which can lead to:

- Permanent knee joint damage
- Dislocated joints
- The knee is where the most damage is caused in cycling.

Team 8 Yearly Goals

- Test prototype for comparison data
 - Various crank arm lengths
 - Torque, Power, Cadence, Speed
 - Compare values with traditional bicycle
- Redesign components
- Focus on ergonomics

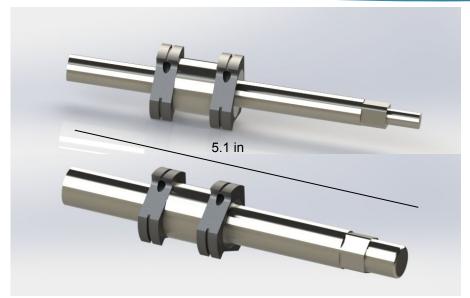
Failed Components

- Crank arms
- Bolts sheared
- Shaft misaligned
- Needle bearing broke
- Ratchet and pawl
- RLT brackets flexed under load
- Output shaft sheared

6

Presenter: Darren Beckford

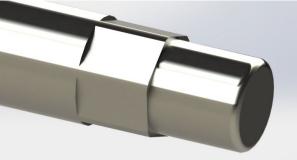
Most Recent Failure



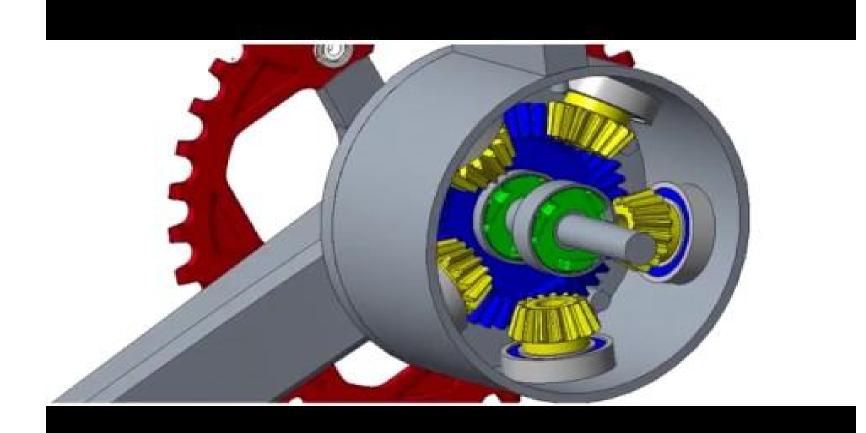
7

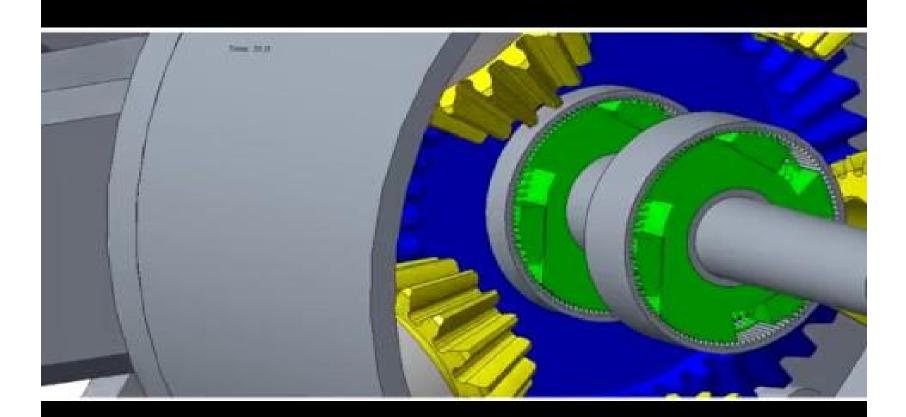
Presenter: Nicholas Khayata

New Output Shaft


Old output shaft (above) vs new output shaft (below)

Presenter: Nicholas Khayata

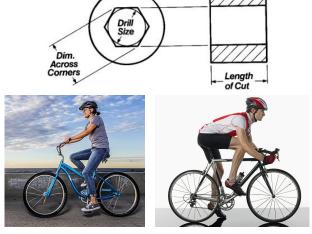

- Significant Changes:
 - Shaft is 40% larger in diameter
 - Shaft to chainring adapter mating point is 50% larger.


8

- Material: 8620 steel
- Hexagonal mating surface

Hexagonal section

12


Updated Budget (Spring)

#	Part	Vendor	Cost	Quantity	Subtotal
1	1/2 in. Hexagon Broach	McMaster.com	\$241.89	1	\$241.89
2	M12-1.75 Class 10 flange locknut	McMaster.com	\$10.65	1	\$10.65
3	% in. diameter 3 ft. 8620 alloy steel rod	McMaster.com	\$22.68	1	\$22.68
4	14mm ID 18mm OD Oil-embedded sleeve bearing	McMaster.com	\$1.75	4	\$7.00
5	14mm ID 16mm OD Dry-running sleeve bearing with steel shell	McMaster.com	\$4.23	2	\$8.46
				Total	\$290.68
resenter: Kyle Roddenberry				Remaining Budget	\$894.66

Future Plans

- Implement the new output shaft
 - Machine larger 16mm holes
 - Press fit oil-embedded bushings with 14mm ID
 - Use a hexagon broach in order to maximize mating surface
 - Install the larger output shaft
- Optimize ergonomics
 - Select cruiser/urban style handlebars
 - Select a larger cruiser/urban style seat

Future Suggestions

Future Suggestions

Spline the output shaft for optimum mating surface

- Increase gear ratio to increase maximum speed
- Custom made replacement ratchet pawl system

References

[1] "Hexagon Broaches | Hex Dimensions Across Corners." DuMONT. Web. 23 Mar. 2017. http://dumont.com/our-broaches/> 15

- [2] G. H. Hansen, "Reciprocating Lever Transmission.," Patent US20130205928 A1, 2013.
- [3] "McMaster-Carr." McMaster-Carr. Web. <https://www.mcmaster.com/>
- [4] SUB1.5-4515." KHK-USA. N.p., n.d. Web. 20 Mar. 2017.
 https://www.khkgears.us/catalog/product/SUB1.5-4515>.
- [5] Web. 26 Mar. 2017. http://www.bicycling.com/sites/bicycling.com/files/posture-main.jpg>.

Presenter: Kyle Roddenberry

Questions?