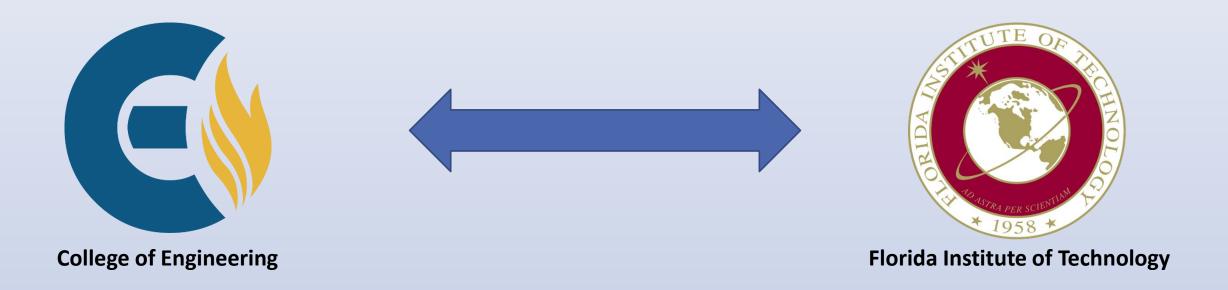
Team 11: Design of an Autonomous Ground Vehicle

For Intelligent Ground Vehicle Competition

FLORIDA A&M UNIVERSITY - FLORIDA STATE UNIVERSITY - FLORIDA INSTITUTE OF TECHNOLOGY

<u>FAMU-FSU</u> <u>College of</u> <u>Engineering(COE)</u> Andres Nodarse Ezekiel Copeland Justin Daniel Matthew Patton Tajaey Young

Sponsored by: NORTHROP GRUMMAN


Advisors: Nikhil Gupta & Matthew Jensen

<u>FIT</u>

Adam Hill Brent Allard Christopher Kocsis Kartkea Sharma Matthew Salferhobbs Rohit Kumar William Nyffenegger

To implement distributed engineering by collaborating with Florida Institute of Technology by dividing goals and working effectively

Distributed Engineering

Why:

- Geographically Separated Institutions
- Prepare for Industry jobs
- Multidiscipline Collaboration

How:

Communication

- Slackbot Overall Team and Sub Team Messages
- Google Hangouts Teleconferences
- Semester Visits

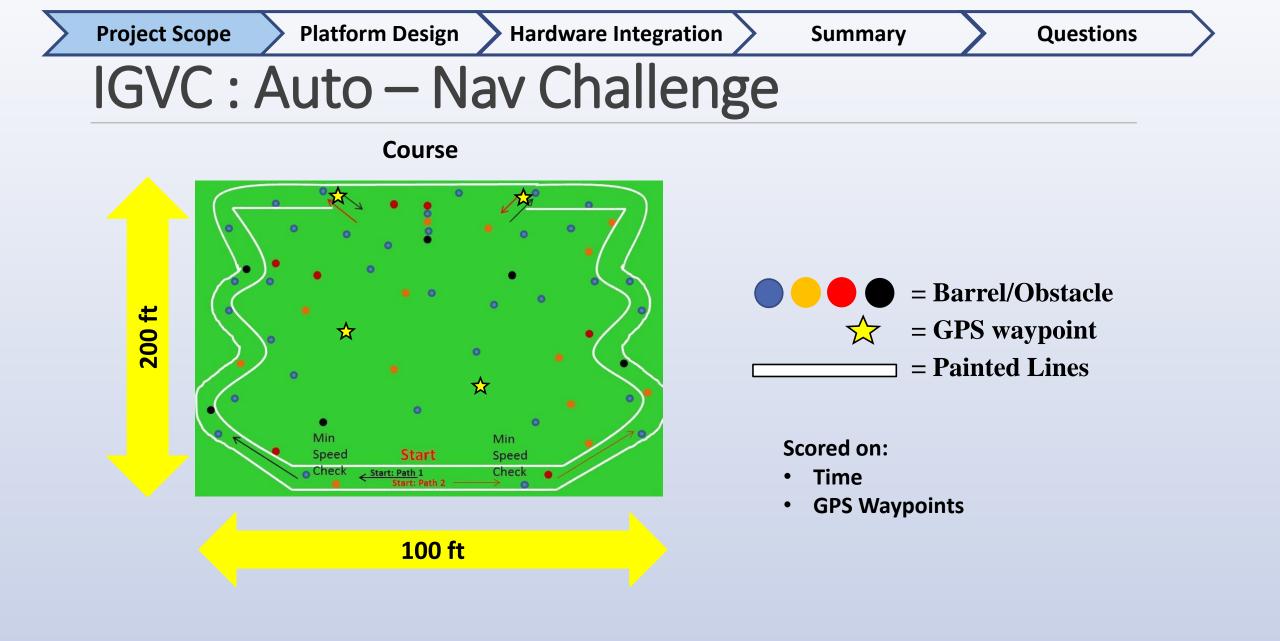
File Sharing

- GrabCAD CAD File Sharing
- OneNote drive Report and Note Sharing
- GitHub Code Sharing

Intelligent Ground Vehicle Competition (IGVC)

June 2nd 2017 at Oakland University (Rochester, MI)

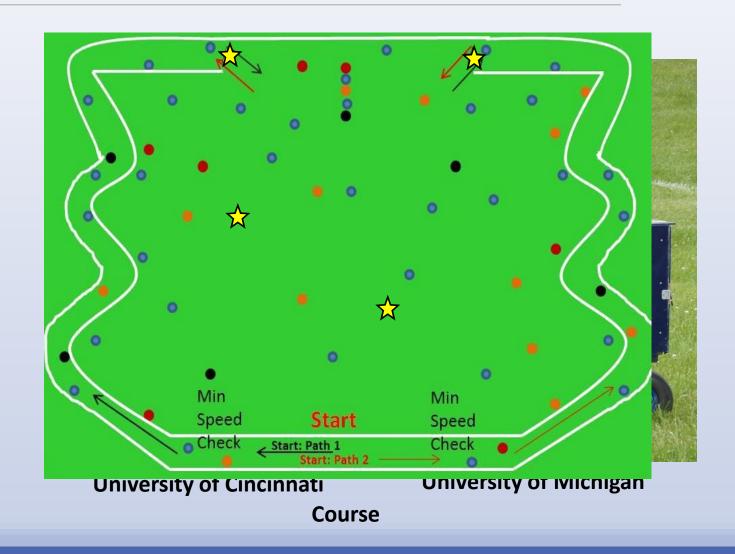
Multidisciplinary Competition with Real World Application


- Disciplines
 - Electrical Engineering
 - Computer Science and Engineering
 - Mechanical Engineering

Three Challenges:

- Design
- Software Integration
- Auto-Nav Challenge

- Applications
 - Self driving car
 - Warehouse robot
 - Manufacturing


IGVC: Constraints

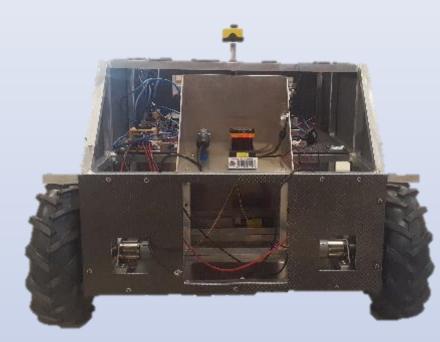
- 1 mph ≤ Speed ≤ 5mph
- GPS Waypoint-2 meter accuracy
- Safety
 - Wireless/Hard E-Stop
 - Emergency Light

Dimensions of the Vehicle:

- 3ft < Length < 7ft
- 2ft < Width < 4ft
- Max Height 6ft
- Payload: 20lb 18" x 8" x 8"

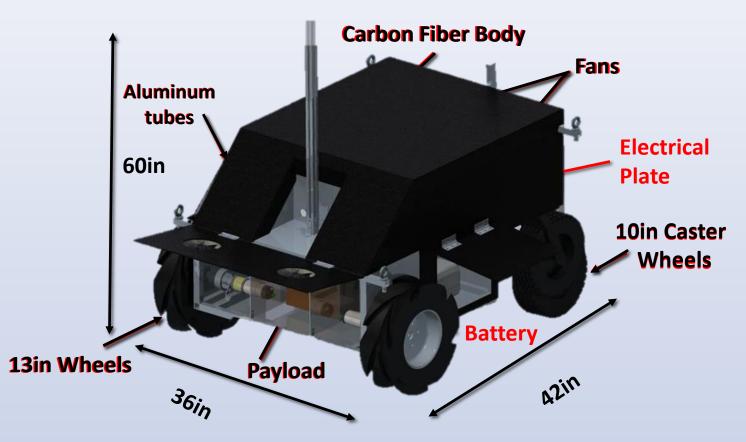
Water Resistant

Goal: Design and develop an autonomous ground vehicle capable of competing in the Intelligent Ground Vehicle Competition in June 2017.


- COE Goals:
 - Platform Design
 - Hardware Integration
 - Localization

- FIT Goals:
 - Perception
 - Object Detection
 - Motion Planning

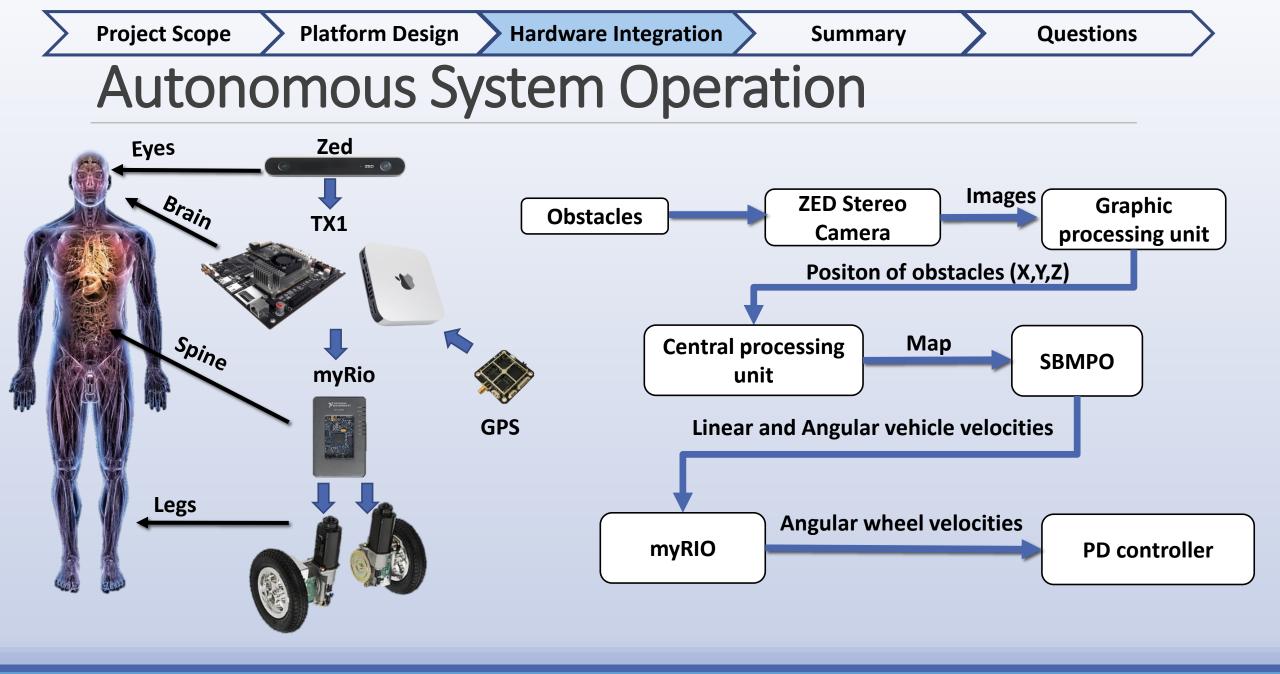
Platform Design


Andres Nodarse

Vehicle Overview

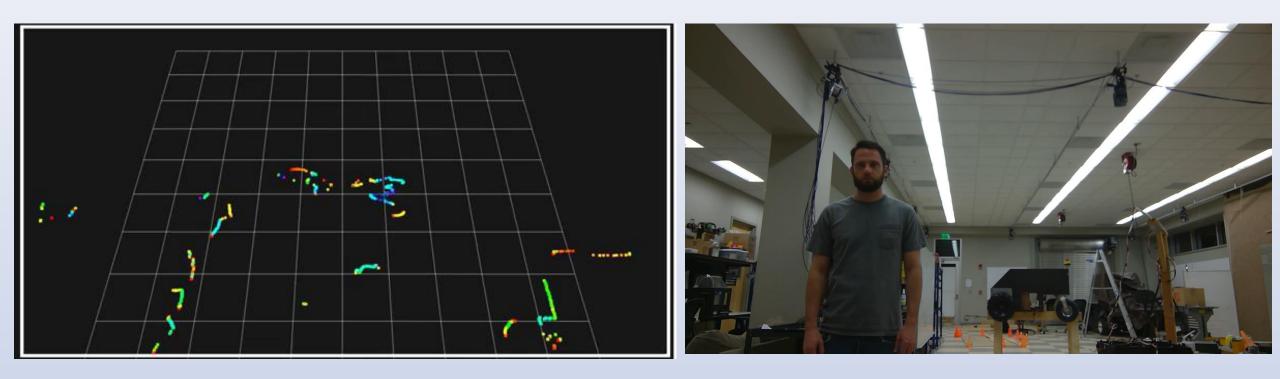
- Structural Design
 - Frame: Hollow Aluminum Tubes
 - Body: Carbon Fiber
- Vehicle Maneuverability
 - Differential Steered
- Weight Distribution
 - Payload

•Ease of Maintenance


- Cooling
- Accessibility

Hardware Integration

Andres Nodarse


Perception (Eyes)

- LIDAR
 - Streaming Object Data
 - Visualize Obstacles
 - Fill Up Occupancy Grid
- Line Detection
 - Detecting Lines in Certain Conditions

Justin Daniel

Localization (Brain)

Piksi by SwiftNAV

- Centimeter Accuracy (With Base Station)
- 2-3 Meter Accuracy (Without Base Station)
- 10 Hz Update Rate

Quadrature Encoders to Output Shaft

- 700 Ticks per Revolution
- Gear Ratio-50:1

Inertial Measurement Unit

Orientation

Piksi by SwiftNAV

Example Encoder

IMU

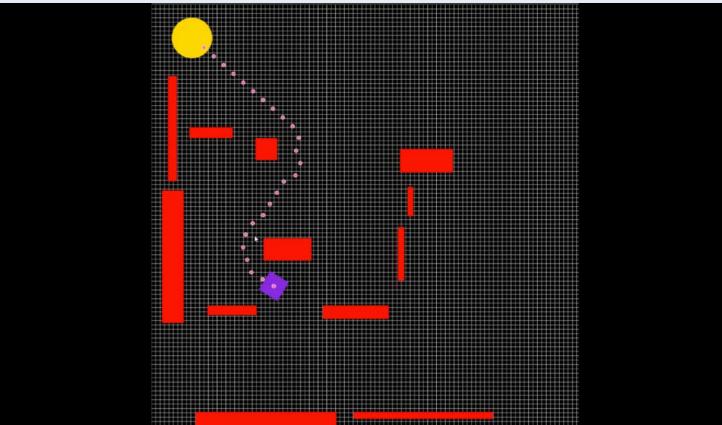

Computer (Brain)

Nvidia Jetson TX1

- Powerful GPU
- Processing Raw Images from ZED.

Mac Mini

- Used for CPU
- Processing Trajectories from Motion Planner (SBMPO)


Jetson TX 1

Mac Mini

Computer (Brain)

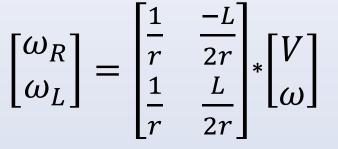
Motion Planner Simulation

Motor Control (Legs)

- Receives Vehicle Command Velocities (Linear and Angular) from Motion Planner
- Programmed through MyRIO/LabVIEW
- Implemented PD Controller for Effective Velocity Control for Position
- Encoders Determine Error in Position and Velocity

MyRIO Microcontroller

Motor Control (Legs)


Kinematic Model Inputs

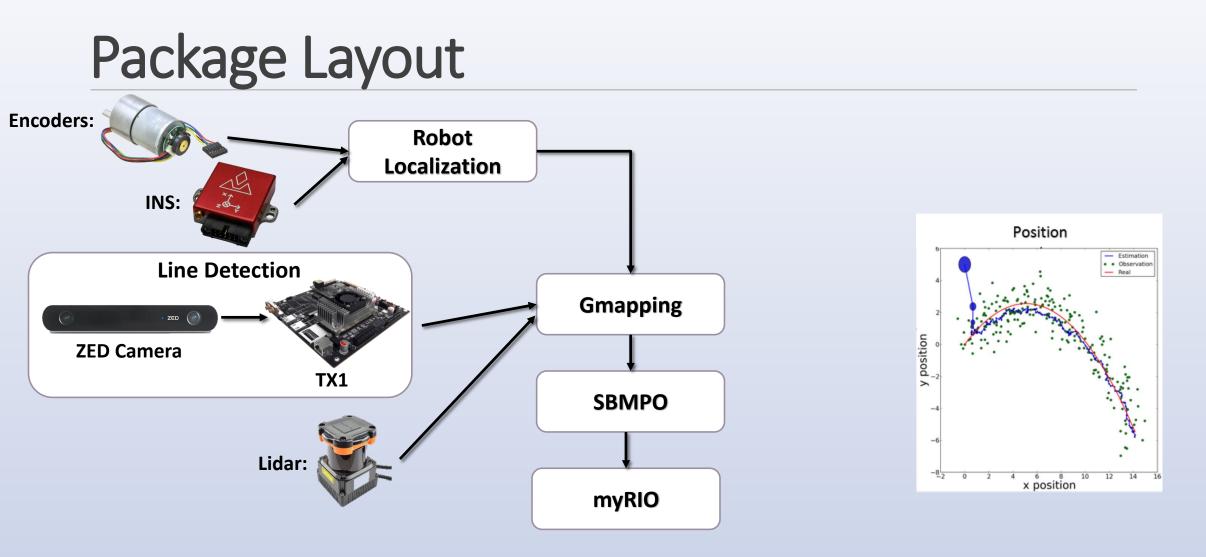
- Linear Velocity of Vehicle
- Angular Velocity of Vehicle

Outputs

Angular Velocity of Wheels

 ω_L

 ω_R


V

Motor Control (Legs)

Justin Daniel

Robot Operating System

Matthew Patton

Summary

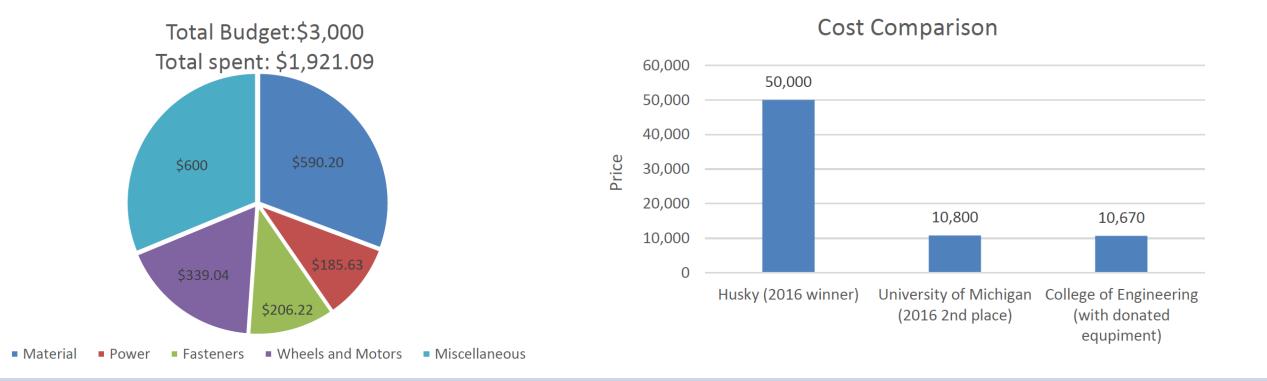
Achievements

- Fully Fabricated Robotic Platform
- Development of PD Controller
- Power Systems
- Integration of Electronics
- Water Resistant Design
- Manual Control of Platform
- Integration of Perception/Localization Sensors
- Ability to Send Trajectories from Motion Planner

> Hardware Integration

Future Work

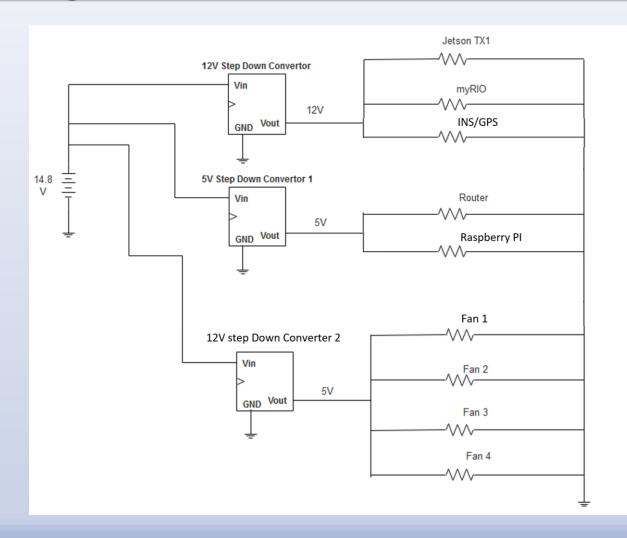
- Motion Planner Integration
- Line Following Integration
- Finish Localization
- Competition



- Dudek. "Differential Kinematics and Statics." Advanced Textbooks in Control and Signal Processing Robotics (2010): 105-60. Computational Principles of Mobile Robotics. Web. 05 Oct. 2016.
- Gupta, Nikhil. *Dynamic Modeling and Motion Planning for Robotic Skid-Steered Vehicles*. Diss. Florida State U, 2014. Tallahassee: FSU Digital Library, 2014. *Diginole*. Web. 4 Sept. 2016.
- <u>http://www.nvidia.com/object/jetson-tx1-module.html</u>
- <u>https://www.swiftnav.com/piksi.html</u>
- "Serial Peripheral Interface (SPI)." *Learn at SparkFun Electronics*. N.p., n.d. Web. 14 Nov. 2016.
 https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi.
- "Serial Communication." *Learn at SparkFun Electronics*. N.p., n.d. Web. 14 Nov. 2016. https://learn.sparkfun.com/tutorials/serial-communication/uarts.
- "I2C." Learn at SparkFun Electronics. N.p., n.d. Web. 14 Nov. 2016.
 ">https://learn.sparkfun.com/tutorials/i2c>.

Questions?

Project Scope Platform Design Hardware Integration Questions Summary **Gantt Chart for Spring Semester 2017** <u>FIT</u> – BOTH – Task Name Feb Feb 12 Feb 19 Feb 26 Mar 5 Mar 19 Jan 15 Jan 22 Mar 12 Mar 26 Apr 2 Apr 9 Apr 16 Jan 8 Fabrication Fabrication Welding Aluminum Frame Welding Aluminum Frame Water Jetting Pieces Water Jetting Pieces Camera Mount Camera Mount DAY Full Assembly Full Assembly Finished Power Power <u>D</u> Component Selection Component Selection Printing Hardware Mounts Printing Hardware Mounts Wiring/Mounting Wiring/Mounting Testing Testing Line Following Perception Perception Line Following LIDAR Driver Working Drivers with LIDAR Finished Navigation Navigation Finished **INS & GPS Drivers INS/GPS Linux Drivers** Robot Localization Kalman Filter Motion Planner Motion Planner SBMPO SBMPO Integration and Testing Integration and Testing PD Controller PD Controller Perception Perception Navigation Navigation Motion Planner Motion Planner


Andres Nodarse

<u>COE</u> –

<u>FIT</u> –

Gantt Chart for Fall Semester 2016

Task Name		Sep				Oct				Νον				Dec		
	Sep 4	Sep 11	Sep 18	Sep 25	Oct 2	Oct 9	Oct 16	Oct 23	Oct 30	Nov 6	Nov 13	Nov 20	Nov 27	Dec 4	Dec 11	
1 🗖 Design					Des	ign										
2 Brain Storming	В	rain Storming														
3 Concept Generation		_Co	oncept Genera	ation												
4 Concept Selection			Conce	pt Selection												
5 3D Modeling					3D	Modeling										
6 Material Selection					Mat	erial Selectio	n									
7 E Fabrication														Fabrica	ition	
8 Ordering Parts										Orc	lering Parts					
9 Machine Time													Ma	chine Time		
10 Assembly														Assem	bly	
11 Perception														Percep	tion	
12 Point Cloud Library						Point Cloud L	ibrary									
13 Data Translation													Data T	ranslation		
14 White Line Following														White L	ine Followir	
15 Communication														Commu	unication	
16 Serial/Low Level								Serial/Low Lo	evel							
17 Rapid MQ														Rapid N	NQ	
18 - Localization/Navigation									Locali	ization/Naviga	tion					
19 GPS coordinates to file							_GP	S coordinates	s to file							
20 GPs Feedback to Control Law									GPs F	eedback to C	ontrol Law					
21 Motion Planner					-									Motion	Planner	
22 SBMPO														SBMPC	C	

Problems and Solutions

Problems	Solutions
ProgrammingDependencies	Reallocation to FIT
 Design Water Jet Out of Order Waterproofing ONSHAPE Limitations 	 Allocated Resources to Other Jobs Waterproof Connectors/Carbon Fiber Shell Switched to Pro-E/GrabCAD
HardwareDriversCommunication	FIT Compiling DriversRaspberry PI
PerceptionIdentifying White Painted LinesMultitasking with One Camera	Research Line IdentificationAdded LIDAR