

Team 13: James Hutchinson, Melanie Gonzalez, Tianna Lentino, Leslie Dunn, Colleen Kidder

Project Scope

Design, build, and test a lightweight thermal management system for the Next-Gen SiC PV converter to increase the power density.

Motivation

PV converters transform electrical energy with power electronic devices. The heat generated by PE devices must be dissipated to ensure safe operation. To remain competitive in the power electronics market, the next-gen PV converter's power density must be increased. The original CAPS heatsink is overdesigned and contributes nearly half of the overall system weight.

Solution Approach

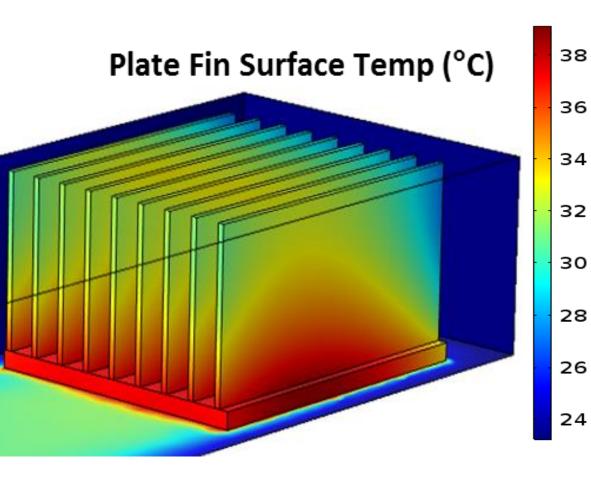
Implement bi-modular pin fin heatsink to reduce size & weight using 3 methods of verification: calculations, simulations, and experimentation.

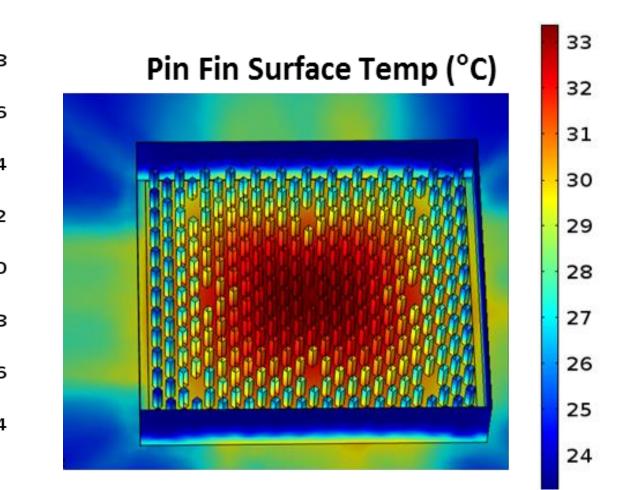
Original CAPS Heatsink

- Plate Fin Heatsink
- 8 power modules & 8 fans
- Weight: 6.45 kg
- 2.5 kW/kg

Design & Verification of Thermal Management for SiC PV Converter Team 13

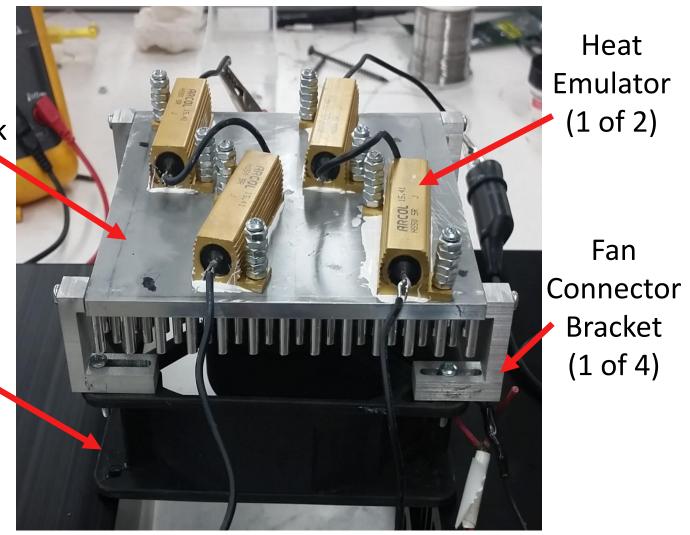
2016-2017


Sponsor: Center for Advanced Power Systems


Simulation Verification

Software: COMSOL Multiphysics

ullet

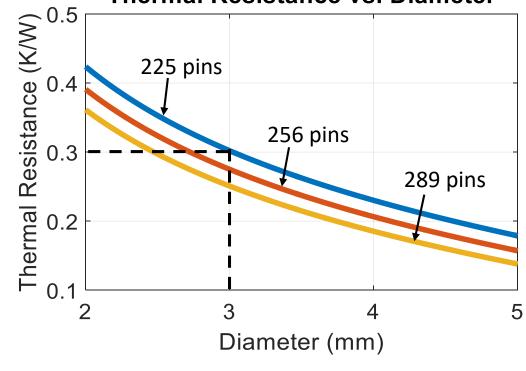

- Constructed geometry, added boundary conditions,
- built/refined mesh, analyzed results
- Power loss = 120 W \rightarrow T_{max} \approx 33-38°C
- Pin fin design was selected over plate fin due to its greater weight reduction with similar thermal results

Experimental Testing

- Tested both plate fin and pin fin heatsinks
- Used 2 high power resistors in series to emulate power
- module heat source
- Measured temp Pin Fin with infrared gun at Heatsink 5 points & averaged Natural convection: Temp > 120°C Forced convection: 12V Fan Temp ≈ 36-38°C
- for power of 120 W

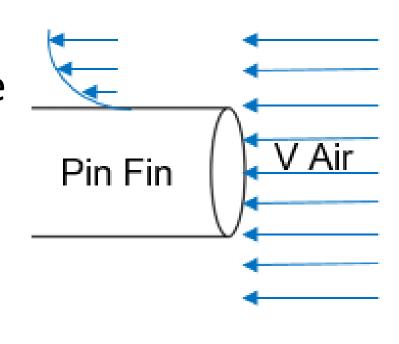
Advisors: Dr. Hui Li & Dr. Juan Ordonez **Instructors:** Dr. Chiang Shih & Dr. Jerris Hooker

Theoretical Analysis


- Calculated convective & conductive thermal resistance
- Important parameters:
 - Reynolds number
 - Nusselt number
 - Fin efficiency
 - Heatsink geometry

Optimization

Weight optimization of pin fin heatsink design


Input Values	Output Values	Constant Values
 Fan Speed (0.02-0.05 m³/s) Pin length (5-40 mm) Pin diameter (2-5 mm) Number of Pins (100-300) Pin Spacing 	 Total Weight (< 0.254 kg) Thermal Resistance (~0.3 K/W) 	 Base Size (115 x 115 mm²) Base Thickness (4.7 mm)

- Cost of decreased weight is increased thermal resistance • Results:
- 15 x 15 evenly spaced pins
- Pin Diameter = 3.0 mm
- Pin Length = 10.0 mm
- Weight = 211 g

Accomplishments

- Selected cylindrical pin-fin as optimized design
- Analysis, simulation, & experimentation had consistent results
- Increased power density to 6.54kW/kg
- Reduced thermal system weight by 71%

