# Designing \& Testing Lightweight Heatsink for SiC PV Converter Team 13 

Electrical Engineering<br>Melanie Gonzalez<br>Tianna Lentino

Mechanical Engineering
Leslie Dunn
James Hutchinson
Colleen Kidder

## Project Statement

- By decreasing the weight of the heatsink, the power density of the converter can be increased
- Provide a heatsink design \& test method for power converters that will allow for optimal system performance

Weight Distribution for 100 kW Power Converter


## Project Scope



## Project Objectives

- Increase the power density from $2.5 \mathrm{~kW} / \mathrm{kg}$
- Optimize design for pin fin heatsink
- Implement bi-modular design for a pin fin heatsink
- Select the appropriate fan size and speed



## Plan \& Methodology

- Through research \& calculations, determine initial plate and pin fin modular heatsink designs
- Design \& build heat source emulator for heatsink testing
- Verify calculations using both COMSOL simulations and experimental results
- Further improve design through optimized calculations



## Heatsink Analysis

- Plate fin \& Pin fin heatsink designs were analyzed using calculations and simulations assuming 120 W heat source and an ambient temperature of $20^{\circ} \mathrm{C}$

| Heatsink Design | Plate Fin | Pin Fin |
| :---: | :---: | :---: |
| Size | $127 \mathrm{~mm} \times 127 \mathrm{~mm} \times 69.2 \mathrm{~mm}$ | $113.7 \mathrm{~mm} \times 113.7 \mathrm{~mm} \times 17.8 \mathrm{~mm}$ |
| Weight w/ fans | 0.954 kg | 0.553 kg |
| Fan Speed | $1.73 \mathrm{~m}^{3} / \mathrm{min}(\times 2)$ | $3.03 \mathrm{~m}^{3} / \mathrm{min}$ |
| Fan Orientation | Lateral | Axial |
| Junction Temperature | $41^{\circ} \mathrm{C}$ | $36^{\circ} \mathrm{C}$ |

## Weight Comparisons

- Original heatsink weighs 6.45 kg , supports 8 power modules

| Heatsink Design | Plate Fin | Pin Fin |
| :---: | :---: | :---: |
| Weight (2 modules) | 0.954 kg | 0.553 kg |
| Weight (8 modules) | 3.816 kg | 2.212 kg |
| Weight Reduction \% | $40.8 \%$ | $65.7 \%$ |

## Preliminary Results: Plate Fin

- Plate fin tested using heat source emulators until steady state temperature was reached
- Fan power supply: $0.5 \mathrm{~A}, 5.27 \mathrm{~V}$
- Power module power supply: $2.5 \mathrm{~A}, 24.5 \mathrm{~V}$
- Junction Temperature $=52.8^{\circ} \mathrm{C}$
- Thermal Resistance $\approx 0.257 \mathrm{~K} / \mathrm{W}$

$$
R=\frac{T_{\max }-T_{\text {room }}}{\dot{Q}}
$$

Heatsink Testing, Temperature vs. Time


## PowerAmerica Conference

- Attended PowerAmerica Annual Meeting at North Carolina State University
- Presented project results to industry professionals \& academic researchers
- Gained further incite into significance of thermal management for SiC PV converters



## Challenges

-Improvements have been made in COMSOL
-Testing:

- One resistor had inconsistent thermal results
- Power output of resistors in theory: 200 Watts
- Power output of resistors in experiment: 120 Watts
- Fan was not at max speed during first stage of testing
-Calculations: Significant error exists in the pin fin calculations
- Current identified sources include


1. Nusselt Number Equations
2. Average Velocity of the air through the fins

## Gantt Chart



## Summary

Provide a heatsink design \& test method for power converters that will allow for optimal system performance. By decreasing the weight of the heatsink we can increase the power density of the converter.

- Continue testing to eliminate errors and perform comparison between simulations and test results
- Eliminate error generated from the pin fin calculations
- Optimize the Pin Fin Heatsink design
- Provide Dr. Li with a Heatsink Selection Guide

