

Designing & Testing Lightweight Heatsink for SiC PV Converter Team 13

Electrical Engineering
Melanie Gonzalez
Tianna Lentino

Mechanical Engineering
Leslie Dunn
James Hutchinson
Colleen Kidder

- By decreasing the weight of the heatsink, the power density of the converter can be increased
- Provide a heatsink design & test method for power converters that will allow for optimal system performance

Weight Distribution for 100kW Power Converter

Project Scope

- Design an optimized thermal system for power converters to increase the power density
 - Plate fin vs. pin fin
- Implement a modular heatsink design to advance the current system

Project Objectives

- Increase the power density from 2.5 kW/kg
- Optimize design for pin fin heatsink
- Implement bi-modular design for a pin fin heatsink
- Select the appropriate fan size and speed

Plan & Methodology

- Through research & calculations,
 determine initial plate and pin fin
 modular heatsink designs
- Design & build heat source emulator for heatsink testing
- Verify calculations using both COMSOL simulations and experimental results
- Further improve design through optimized calculations

 Plate fin & Pin fin heatsink designs were analyzed using calculations and simulations assuming 120W heat source and an ambient temperature of 20°C

Heatsink Design	Plate Fin	Pin Fin
Size	127mm x 127mm x 69.2mm	113.7mm x 113.7mm x 17.8mm
Weight w/ fans	0.954 kg	0.553 kg
Fan Speed	1.73 m³/min (x2)	3.03 m³/min
Fan Orientation	Lateral	Axial
Junction Temperature	41°C	36°C

Weight Comparisons

Original heatsink weighs 6.45 kg, supports 8 power modules

Heatsink Design	Plate Fin	Pin Fin
Weight (2 modules)	0.954 kg	0.553 kg
Weight (8 modules)	3.816 kg	2.212 kg
Weight Reduction %	40.8%	65.7%

CAPS Original Heatsink

Preliminary Results: Plate Fin

- Plate fin tested using heat source emulators until steady state temperature was reached
- Fan power supply: 0.5A, 5.27V
- Power module power supply: 2.5A, 24.5V
- Junction Temperature = 52.8°C
- Thermal Resistance ≈ 0.257 K/W

$$R = \frac{T_{max} - T_{room}}{\dot{Q}}$$

Heatsink Testing, Temperature vs. Time

PowerAmerica Conference

- Attended PowerAmerica Annual Meeting at North Carolina State University
- Presented project results to industry professionals & academic researchers
- Gained further incite into significance of thermal management for SiC PV converters

Challenges

Improvements have been made in COMSOL

•Testing:

- One resistor had inconsistent thermal results
- Power output of resistors in theory: 200 Watts
- Power output of resistors in experiment: 120 Watts
- Fan was not at max speed during first stage of testing
- Calculations: Significant error exists in the pin fin calculations
 - Current identified sources include
 - 1. Nusselt Number Equations
 - 2. Average Velocity of the air through the fins

Gantt Chart

Summary

Provide a heatsink design & test method for power converters that will allow for optimal system performance. By decreasing the weight of the heatsink we can increase the power density of the converter.

- Continue testing to eliminate errors and perform comparison between simulations and test results
- Eliminate error generated from the pin fin calculations
- Optimize the Pin Fin Heatsink design
- Provide Dr. Li with a Heatsink Selection Guide