

Designing & Testing Thermal Management System for SiC PV Converter Team 13

Electrical Engineering
Melanie Gonzalez
Tianna Lentino

Mechanical Engineering
Leslie Dunn
James Hutchinson
Colleen Kidder

Background Information

- PV Converters made with PE devices
 - Transforms electrical energy (DC/AC)
 - Generate heat
 - Cooled by heatsink/fans
- Typically made with Silicon
 - Cheap & abundant
 - Dominate the market
- SiC: Newer Material
 - Pro: Efficient
 - Con: Expensive
 - PowerAmerica goal: make SiC cost competitive

Project Overview

- Background: CAPS Next Generation PV Converter has one of the highest power densities (Power/weight)
 - Further increase power density
- Problem: Heatsink used for this PV Converter was overdesigned
 - Remains cool during operation
 - Too heavy
- Solution: Provide an optimal heatsink design
 - Decrease weight of system, increase power density
- Approach: 3 methods to verify design
 - Simulation, Calculations, & Experimentation

Next Gen PV Converter

- Plate Fin Heatsink
- 8 Power Modules & Fans
- 375 mm x 280 mm x 80 mm
- 6.5 kg

Bi-Modular Design for Heatsink

Heatsink Design	Plate Fin	Pin Fin
Size	127mm x 127mm x 69.2mm	113.7mm x 113.7mm x 17.8mm
Weight (including fans)	0.954 kg	0.553 kg
Fan Orientation	Lateral	Axial

Experimental Testing Procedure

- Two series of tests
 - Natural convection and forced convection
- Measured temperature with infrared gun
 - Took measurements at 5 points and averaged them
- Used power supply for fans
 - Plate Fin: 7.5V, 0.95A, Power = 7.2 W
 - Pin Fin: 11.52V, 0.57A, Power = 6.6 W

- Plate Fin & Pin Fin Natural Convection Tests
 - Supplied a total power of 120 W to the system
 - Temperature exceeded the maximum wanted temperature of 120° C

No fan tests confirmed the decision to use fans

Plate Fin Testing, Forced Convection

With copper plates

Total Power Diss. (W)	Average Temp. (°C)
0	23.36
30	28.04
60	30.36
90	33.22
120	36.4
150	42.08
180	42.5

Without copper plates

Total Power Diss. (W)	Average Temp. (°C)
0	23.9
30	28.16
60	29.22
90	34.6
120	37.2
150	39.6
180	41.4

Heat Source Emulator (1 of 2)

12V Fan (1 of 2)

Pin Fin Testing, Forced Convection

Total Power Dissipated (W)	Average Temperature (°C)
0	22.6
30	27.02
60	29.12
90	31.72
120	37.86
150	38.72
180	41.42

Testing Comparisons

Simulation Procedure

Software: COMSOL Multiphysics

- Constructed geometry and added material properties
- Applied initial/boundary conditions for heat transfer & laminar flow
- Built/refined mesh
- Ran simulation and analyzed results

Pin Fin "Coarser" Mesh

Simulation Results

• Ambient Temperature: 23.25°C

Power Input: 120 W

• $T_{max} \approx 33-38$ °C

Plate Fin Surface Temp (°C)

Pin Fin Surface Temp (°C)

Leslie Dunn

Comparison of Plate vs Pin

- Pin fin heatsink design has been chosen for optimization over the plate fin heatsink
 - Weight reduction is more significant for pin fin
 - Thermal performance of pin fin virtually equal to that of plate fin
 - Pin fin equations provide less error than plate fin equations

Leslie Dunn

Theoretical Analysis

Total thermal resistance of heatsink:

$$R_{total} = R_{conductive} + R_{convective}$$

Conduction

- Movement of heat between solids due to a temperature gradient. Conduction requires physical contact.
- Occurs in Heatsink Baseplate & Pins

$$R_{conductive} = \frac{l_{solid}}{k_{Aluminum} \times A_{cross \, section}}$$

Convection

- The transfer of heat from one place to another by the movement of fluids (e.g. air from fan)
- Most influential convection occurs across fins & at bottom of baseplate

from fan

Theoretical Analysis

Convection is more complex

$$R_{convective} = \frac{1}{\left(N_{fins} \times \eta_{fins} \times h \times A_{fin_surface}\right) + \left(h \times A_{unfin}\right)}$$

- Convective heat transfer coefficient (h)
 - Velocity of air entering array of fins
 - Reynolds Number
 - Prandtl Number
 - Nusselt Number assuming flow over a flat plate
- Fin efficiency (η)
 - · Geometry factor for cylindrical fins
 - Corrected fin length
- Correction factor to account for hindrance of air flow from pin array

Leslie Dunn

Heatsink Optimization

Optimizing by varying heatsink geometry and fan speed.

Input Values	Output Values	Constant Values
 Length of pins (5mm-40mm) Diameter of pins (2mm-5mm) Pin Spacing Number of Pins Fan Speed 	Total WeightThermal Resistance	Base SizeBase Thickness

Heatsink Optimization

Goals

- Minimize heatsink weight (< 0.254 kg)
- Obtain thermal resistance of 0.3 K/W or less
- Baseplate temperature should be in the range 30-60°C

Assumptions

- Constant baseplate size: 115 mm x 115 mm x 4.7 mm
- Uniform pin distribution
- Power loss/Heat source: 105.2 W

Optimization Relationships

- Cost of decreased weight is increased thermal resistance
- Change in length has least effect on output

Decreasing Parameter	Thermal Resistance	Weight
Pin Diameter	†	↓
Pin Length	†	↓
# of Pins	†	↓
Fan Speed	†	

Optimization Results

- Varying diameter size: 2-5 mm
- To obtain necessary thermal resistance:
 - # Pins > 200
 - Diameter >= 3.0 mm
 - Fan speed >= $0.04 \text{ m}^3/\text{s}$
- To obtain even pin spacing, a uniform number of pins in each direction is needed

Fan Selection

- Searched for lowest weight fan that met sizing, flow rate, and voltage requirements
- New fan nearly half the weight of old fan

	Old Fan	New Fan
Weight (g)	300	157
Size (mm³)	120 x 120 x 38	120 x 120 x 25
Flow Rate (m ³ /s)	0.0505	0.051
Voltage (VDC)	12	12

Optimized Design

- 15 x 15 array of evenly spaced pins (225 total)
- Diameter = 3.0 mm
- Length = 10.0 mm
- Weight = 211 g

Weight reduction including fans:

- 34% < Manufacturer pin fin
- 71% < CAPS original heatsink

Optimized Pin Fin

COMSOL Verification

- Max Surface Temperature = 31.6°C
- Yields thermal resistance ≈ 0.3004 K/W

$$R_{total} = \frac{\Delta T}{\dot{Q}}$$

Design Overview

Thermal System

Components x4

- One 115m x 115mm Pin fin heat sink
- Four connector pieces
- Eight screws
- One 120mm x 120mm Cooling fan

Assembly & Placement

- Assembly will take an estimated 15 minutes
- Each thermal system will be placed 1in apart each other

Final Solution

Original CAPS Heatsink

- Plate Fin Heatsink
- 8 Power Modules & Fans
- 375 mm x 280 mm x 80 mm
- **6.5** kg

Solution: 4 Pin Fin Heatsinks

- Pin Fin Heatsink
- 2 Power Modules / Heatsink
- 1 Fan / Heatsink
- 115 mm x 115 mm x 14.7 mm
- 0.429kg per heatsink (1.716 kg total)

Budget Overview

- The total amount spent for this project was kept under the \$400 limit
- Total expenditures accounted for \$291.68
- A large amount of lab equipment was available in CAPS to offset the price for the project

TOTAL AMOUNT SPENT = \$291.68 OF \$400 BUDGET

Accomplishments

Goal statement: Create a lightweight thermal structure for future applications

- Analyzed plate & pin fin designs through calculations, simulations, and experimentation
- Selected and optimized pin fin heatsink design
- Increased power density from 2.5 kW/kg to 6.54 kW/kg
- Reduced the weight of the total thermal system by 71%
- Developed heatsink selection guide

Acknowledgement

- •Dr. Li
- Dr. Juan Ordonez
- •Dr. Kumar
- •Dr. Guo
- Thierry Kayiranga
- Sandro Martin
- •Dr. Shih

- PowerAmerica
- CAPS
- •AME
- COE Machine Shop

References

Clengel, Yunus A., Mehmet Kanoglu, John M. Cimbala, and Robert H. Turner. *Fundamentals of Thermal-fluid Sciences*. Singapore: McGraw-Hill Education, 2017. Print.

"Cold Forging Technology and Pin Fin Heat Sinks." My Heat Sinks. Web. 23 Feb. 2017.

"Top 3 Mistakes Made When Selecting a Heat Sink." *Heat Sink Calculator*. 25 May 2016. Web. 26 Mar. 2017.

Questions?