

Designing & Testing Lightweight Heatsink for SiC PV Converter Team 13

Electrical Engineering Melanie Gonzalez Tianna Lentino Mechanical Engineering Leslie Dunn James Hutchinson Colleen Kidder

Project Overview

- Background: CAPS Next Generation PV Inverter has one of the highest power densities (Power out / weight)
- Problem: Heatsink used for this PV Converter was overdesigned
 - Too heavy & cold to the touch at maximum power output
- **Solution**: Provide a heatsink design & test method that will allow for optimal system performance.
 - By decreasing the weight of the heatsink, the power density of the converter can be increased.
- Approach: Utilize 3 methods for verification
 - COMSOL, Calculations, & Testing with Heat Source Emulator

Weight Distribution for 100kW Power Converter

Project Approach

Original CAPS Heatsink

- Plate Fin Heatsink
- 8 Power Modules
- 8 Fans
- 375 mm x 280 mm x 80 mm
- 6.5 kg

Solution: 4 Pin Fin Heatsinks

- Pin Fin Heatsink
- 2 Power Modules / Heatsink
- 1 Fan / Heatsink
- 115 mm x 115 mm x X mm
- < 0.56 kg per heatsink (2.2 kg total)

Tianna Lentino

Heatsink Characteristics

• Plate fin and pin fin heatsink designs were analyzed using calculations, simulations and testing

Heatsink Design	Plate Fin	Pin Fin
Size	127mm x 127mm x 69.2mm	113.7mm x 113.7mm x 17.8mm
Weight (including fans)	0.954 kg	0.553 kg
Fan Orientation	Lateral	Axial

Plate Fin Testing Procedure

- Used power supply for fans at 7.5V, 0.95A
 - Power = 7.2W
- Measured temperature with infrared gun
 - Took measurements at 5 points and averaged

Approximate measuring points

Tianna Lentino

Plate Fin Testing

• With copper plate under emulators

Power Dissipated per Emulator (W)	Total Power Dissipated (W)	Average Temperature (°C)
0	0	23.36
15	30	28.04
30	60	30.36
45	90	33.22
60	120	36.4
75	150	42.08
90	180	42.5

• Without copper plate under emulators

Power Dissipated per Emulator (W)	Total Power Dissipated (W)	Average Temperature (°C)
0	0	23.9
15	30	28.16
30	60	29.22
45	90	34.6
60	120	37.2
75	150	39.6
90	180	41.4

Pin Fin Testing Procedure

- Used power supply for fans at 11.52V, 0.57A
 - Power = 6.6W
- Measured temperature with infrared gun
 - Took measurements at 5 points and averaged

Approximate measuring points

Tianna Lentino

Pin Fin Testing

• Without copper plate under emulators

Power Dissipated per Emulator (W)	Total Power Dissipated (W)	Average Temperature (°C)
0	0	22.6
15	30	27.02
30	60	29.12
45	90	31.72
60	120	37.86
75	150	38.72
90	180	41.42

Testing Comparisons

COMSOL Procedure

- Constructed geometry and added material properties
- Applied initial/boundary conditions for heat transfer & laminar flow
- Built/refined mesh
- Ran simulation and analyzed results

Pin Fin "Coarser" Mesh

COMSOL Results

- Ambient Temperature: 23.25°C
- Power Input: 120 W

Plate Fin Surface Temp (°C)

Procedure for Calculation

Thermal Resistance found from COMSOL & Test results

Heatsink Mass (comparable to weight)

Convective Thermal Resistance for 1 Fin

Leslie Dunn

Accounting for an Array of Pins

- •Convective thermal resistance was taken considering flow around 1 fin
- •The addition of other pins accounts for an estimated 20-30% error in the Convective thermal resistance
- To account for this, a variable C_{correction} is included in the calculations. It's currently considered to be 0.25.

 $R_{convective} = R_{convective} \times (1 - C_{correction})$

•Percent error in the pin fin calculations has been reduced from roughly 400% to less than 60%.

Comparison of Thermal Resistances

• Pin Fin

• Plate Fin

	Power Output (W)	Junction Temp. (°C)	Thermal Resistance (°C/W)	Thermal Resistance % Error			Power Output (W)	Junction Temp. (°C)	Thermal Resistance (°C/W)	Thermal Resistance % Error
Test Results		37.86	0.127			Test Results		37.2	0.111	
COMSOL	120	33.38	0.084	33.9%		COMSOL	120	39.145	0.132	18.9 %
Analytical	-	43.55	0.196	33.9%		Analytical		65.6	0.38	242 %
Total Weight	43.55 0.196 54 % 2.212 kg (65.7 % weight reduction)					Total Weight	3	.816 kg (40.8	3 % weight red	uction)

Optimization

Optimizing by varying the heatsink's geometry and fan speed

Input Values	Output Values	Constant Values							
 Length of pins (5mm-40mm) Diameter of pins (2mm-5mm) Pin Spacing Number of Pins Fan Speed 	 Total Weight Thermal Resistance 	 Base Size Base Thickness 							

Gantt Chart

	11,	'16		Jan	1,	'17		Jan	22,	'17	F	eb 1	2, 1	7	Ma	ar 5,	'17	N	/lar 26	, '17
Task Name 👻	S	1	м	Т		w	Т		F	S	1	s	м	Т		w	т	F	S	5
Heat Sink Design																				-
Heat Source Emulation	1																			-
Optimized Heatsink Design																				Ŭ.
Decide Heatsink Material	1																			-
Decide heatsink type	1																			-
Find Most Important Optimization Parameters																				-
Verify & Fix Calculations	1																			-
Create comparative analysis for different geometries	1																			-
Finalize CAD Design	1																			-
Select Appropriate Fan	1																			-
Simulate heatsink with fan in COMSOL																				Ĥ
Heat Sink Testing			_										įπ.							-
Test Plate Fin Heatsinks	1																			-
Compare Results with Simulations]																			-
Test Emulator with Passive Cooling]							Г		1										-
Find Junction Temperature	1																			-
Test Pin Fin Heatsink								Г												-
Compare Results with COMSOL]																			
Compare Results with Calculations]																			
Create Heatsink Selection Guide for Dr. Li]												(Ĥ.

James Hutchinson

Summary

Accomplishments

- Created analytical equations for pin fin heatsink
- Experimentally tested both pin fin and plate fin designs
- Selected a design

Future Plans

- Optimize the Pin Fin Heatsink design
- Provide Dr. Li with a Heatsink Selection Guide

References

Clengel, Yunus A., Mehmet Kanoglu, John M. Cimbala, and Robert H. Turner. *Fundamentals of Thermal-fluid Sciences*. Singapore: McGraw-Hill Education, 2017. Print.

"Cold Forging Technology and Pin Fin Heat Sinks." *My Heat Sinks*. N.p., n.d. Web. 23 Feb. 2017.

Questions?