

Conceptual Design for the NASA Human Exploration Rover Challenge

Luke Maeder Katherine Estrella Quentin Hardwick Jacob Van Dusen Garrett Rady

Advisor: Dr. Nikhil Gupta

Agenda

- Background Information on Competition
- Needs Statement and Goal
- Preliminary Failure Analysis
- Design Focus
- Materials Selection Discussion
- Funding
- Future Plans
- Acknowledgements/Bibliography
- Audience Questions

LUKE MAEDER

The Competition Basics

Prototype a vehicle that ...

- Is human-powered
- Accommodates two people
- Has off-road capabilities
- Is 'small' and 'light'
- Is safe

Needs Statement:

"There needs to be a ground vehicle powered by fit male and female drivers that is capable of competing in the NASA Human Exploration Rover challenge."

LUKE MAEDER

Previous Years Designs

General Designs

- Four-Wheeled vehicles
- Large (~30") Wheels
- Front-Back driver configuration
- Mid-Chassis folding joint
- Varying Suspension types

SUCCESSES

PITFALLS

5

Failure Assessment

Previous Years Failure Analysis: (0-5 , 5 highest value)			
Issue	Frequency	Severity	Possible Solutions
Power/Torque delivery to wheels insufficient *Most evident Issue*	5	4	Reduce wheel size, increase geared output torque, fundamental power conversion change (RLT), increase normal force on contact
Traction in sand or loose gravel insufficient	5	3	Increase contact patch area, redesign tread material/geometry
Exhaustion of riders	4	4	Strength/Endurance training, Decrease work necessary to power through hills
Drive chain breaking or coming unhinged	2	5	Alternative drivetrain, further attention to chain design, simplify gear system
"Bottoming Out" on hills or bumps	1	5	Decrease wheelbase distance, increase chassis height, increase wheel size

LUKE MAEDER 6

House of Quality

Component Morphology

Design chassis

• Frame style, material, suspension, collapsibility, seat orientation

Design of drivetrain

- Chains, belts, reciprocating lever transmission (HansCycle), shaft drive
- Two-wheel vs. all-wheel drive
- Separate or combined drivetrains for two drivers

Steering

- Steering wheel, hand levers
- Two-wheel or all-wheel steering

Design of wheels

Materials, size, shape, tread

Brakes

Disc brakes, drum brakes, rim brakes

Chassis Concepts

'Dune Buggy' inspired chassis

Chassis Concepts

Purdue Inspired Design

Purdue-Calmet 2016 Rover winning design

QUENTIN HARDWICK

Chassis Concepts

QUENTIN HARDWICK

Safety

Most important aspect of this project

How we plan on keeping this a priority:

- Assess design flaws
- Stay within competition constraints
- Tool safety
- Goal is safety factor of 4 in design

Material Selection

Desired Characteristics

- Lightweight
- High strength
- Economically efficient
- Safety factor of 4

Possible Materials for Chassis Design include:

- Aluminum (2024, 6061, 7075)
- Mild Steel
- Carbon Fiber

Aluminum Alloy Comparison

2024

- High strength to weight ratio
- Good fatigue resistance

6061

- Lowest strength to weight ratio
- Cheapest of the 3
- Most abundant

7075

- Highest strength to weight ratio
- Most expensive

Mild Steel

- Durable and strong
- Low carbon = less hard, higher weldability
- Inexpensive, most commonly used form of steel
- Heaviest of the 3 materials being considered
- Different shapes and sizes are attainable
- Most widely used in structural applications

Carbon Fiber

- Highest strength to weight ratio
- Costly
- Different shapes and sizes are attainable
- Strength depends upon orientation
- Most widely used in aircraft components and structures

Schedule (Gantt Chart)

Future Plans

- Chassis: Selection of design
- Drivetrain
- Steering
- Wheels
- Brakes
- Select drivers and begin physical training

Fundraising

- Publix: Request has gone out
- SGA (FAMU and FSU)
- Macy's, JC Penny's, local bike shops
- Fastenal, Grainger, Harbor Freight

References

