

Design and Development of a Human Powered Vehicle: NASA Competition

Advisors: Dr. Chiang Shih

Dr. Nikhil Gupta

Donors: Great Bicycle Shop, University Cycles

Luke Maeder Katherine Estrella Quentin Hardwick Jacob Van Dusen Garrett Rady

TEAM 17

The Competition Basics

Prototype a vehicle that ...

- Is human-powered
- Accommodates two people
- Has off-road capabilities
- Is 'small' and 'light'
- Is safe

Needs Statement:

"There needs to be a ground vehicle powered by fit male and female drivers that is capable of competing in the NASA Human Exploration Rover challenge."

SUCCESSES

PITFALLS

GARRETT RADY

FIGURES 2-5. PURDUE-CALUMET WINNING COMPETITION FOOTAGE^[1]

Component Morphology

Design chassis

• Frame style, material, suspension, collapsibility, seat orientation

Design of drivetrain

- Chains, belts, reciprocating lever transmission
- Two-wheel vs. all-wheel drive
- Separate or combined drivetrains for two drivers

Steering

- Steering wheel, hand levers
- Two-wheel or all-wheel steering

Brakes

• Disc brakes, drum brakes, rim brakes

Design of wheels

• Materials, size, shape, tread

Rhode Island School of Design

- •2nd place at the 2016 competition
- Excellent online documentation

 Approval from RISD team to use their online webpage(s) as resources for our design

Figure 7: RISD Rover 2016

Frame Morphology

Figure 7: Selected Frame Morphology

Figure 8: Alternate Concept 1

Figure 9: Alternate Concept 2

Current Frame Iteration

Figure 10: Current Frame Iteration

*Frame overall dimensions based off RISD and Seating Calculations (attached)

Figure 11: Current Frame Iteration *figures in inches

Tube selection Analysis

Chromalloy Steel Round Tubing

- Strength to weight ratio
- Common Usage
- Weldability
- Availability

Profile Selection (round vs square and dimensions)

- Weldability
- Availability
- Length between joints and profile varied until Factor of safety of 1.4 achieved
 12" member length used as baseline for frame design

Figure 12: tubing selection analysis Final profile 0.75"OD, 0.065" Wall

LUKE MAEDER

Frame Analysis

Figure 13: Factor of Safety Plot (Minimum 1.8)

Figure 14: Von Mises Stress Plot (Maximum 280 KSI)

LUKE MAEDER

Frame Analysis cont.

Figure 15: Deformation animation (4.86 mm max)

Member Total Length: 52 ft. (rounded up)

Cost per 5ft length : \$24.38

Total cost estimate: **\$270** (plus shipping) ^[X]

r	
Alloy Steel	۲
4130	۲
Tube	۲
11	
	Alloy Steel 4130 Tube 11

Enter size information:									
Outer Diameter:	0.75	inche							
Wall:	0.065	inche							
Length:	5	feet							

Calculate Reset Piece Weight (lbs): 2 3668 Total Weight (lbs): 26.034

Figure 16: Weight Estimate [X]

LUKE MAEDER

inches •

Collapsibility

Constraint: Rover must fit within a 5 x 5 x 5 cube **Solution**: Folding Chassis Joint allows rover to fold

- 2 3/8 in. triangular plates
- Hinges welded to bottom
- Material: water jet cut A36 steel
- Welded onto the midsection of the chassis

Folding Chassis Joint Assembly

Figures 17-19: Chassis Fold

Folding Joint CAD Assembly

Open Joint Assembly Closed Joint Assembly Open Side View Figures 20-22: Folding Joint

Folding Joint: FEA Analysis

Figure 25: Folding Joint Analysis

Attachment Tabs

- Metal tabs on two both sides of a Heim Joint
- Through research we found that Heim joints would fit our needs by providing flexibly in some ways and the restraint we need in others

Figure 26-27: Steel Tabs

Tab Analysis

- No real challenges but that part is used in multiple places
- Chromalloy for material, largest stress areas would be the welds holding the tabs to the frame or the area directly around bolt hole

Figure 28: Tab Analysis

Double Wishbone Suspension

Figure 29: Upper A-Arm

Figure 30: Lower A Arm

Suspension

Figure 31: Shock

Simple hub designed to hold the wheel in place and attach steering

- Connects to A-Arms on top and bottom
- Connects to steering link in the rear

Figure 32: Hub

Suspension

A-Arm Angle	Clearance Gained	Minimum Wheel Size
10°	1.6 inches	26.8 inches
15°	2.3 inches	25.4 inches
20°	3.1 inches	23.8 inches
25°	3.8 inches	22.4 inches
30°	4.5 inches	21.0 inches
35°	5.2 inches	19.6 inches
40°	5.8 inches	18.4 inches
45°	6.4 inches	17.3 inches

Table 1: The Angle of the A-Arm and it's impact on Clearance

Front Drive Train Morphology

- Designed around bike components (brake calipers, conical bearings, sprockets)
- Driveshaft : 0.75" OD Mild Steel
 - 2' section \$11.95
- Mounting Plates and brackets:
 - 0.25" AL 7075 (selected for weight and strength)
 - 12x24" **\$92.85**
- Universal Joints: \$82.80

Figure 33: Current Drivetrain Assembly

Figures 34-35: Current Drivetrain Assembly

Rear Drive Train

•Back-to-back configuration means rear wheel is driven in reverse direction of pedaling motion.

•Challenge is to reverse chain direction while maintaining coplanar chain line.

Figures 36-38: Rear Drivetrain

Future Plans

Steering Assembly

- Steering wheel, hand levers
- Two-wheel or all-wheel steering **Design of wheels**
- Materials, size, shape, tread

Seats Assembly

- Seat belts
- Backing
- Adjustability
- Mounting

Gantt Chart

								November						D	ecembe	er	January				
Task Name	-	Duration	-	Start 👻	Finis	h	Ŧ	10/16	10/23	10/30	11/6	11/13	11/20	11/27	12/4	12/11	12/18	12/25	1/1	1/8	1/15
Fundraising		47 days		Sat 10/1/16	Mon	12/5/16															
Conceptual Design		17 days		Sat 10/1/16	Sun	10/23/16															
Chassis		11 days		Tue 10/11/16	Tue	10/25/16															
Part Selection		7 days		Fri 10/21/16	Mon	10/31/16		1													
Drivetrain		10 days		Tue 10/25/16	Sat 1	1/5/16					L										
Suspension		7 days		Tue 10/25/16	Wed	11/2/16															
Steering		7 days		Fri 10/28/16	Sat 1	1/5/16			1												
Purchasing		10 days		Tue 11/1/16	Mon	11/14/16								•							
Wheels		11 days		Thu 11/3/16	Thu	11/17/16															
Manufacturing		15 days		Mon 11/7/16	Fri 1	1/25/16															
Brakes		5 days		Thu 11/17/16	Wed	11/23/16															
Revisiting Design		4 days		Fri 11/25/16	Wed	11/30/16															
Finalize Design		17 days		Thu 12/1/16	Fri 1	2/23/16															
Refine Reports		14 days		Wed 12/14/16	Sat 1	2/31/16															
Continue Manufacturing	g	15 days		Wed 12/21/16	Tue :	1/10/17															
Tweek Design		14 days		Sun 1/1/17	Wed	1/18/17															
Testing		17 days		Mon 1/9/17	Tue :	1/31/17															

Acknowledgements

Thank you to these places for parts:

- University Cycles
- Great Bicycle Shop
- Joe's Bike Shop

Thank you to the student machine shop for information on designing for manufacturing.

Thank you to SAE for advice on vehicular design.

Thank you to Dr. Shih and Dr. Gupta for design advice and project management.

References

<u>http://portfolios.risd.edu/gallery/23181693/RISD-DTC-</u> <u>Moon-Buggy-Parts</u> for a arms

https://grabcad.com/library for basic parts

McMaster Carr

Intro and suspension