

High Speed Motor Test Stand

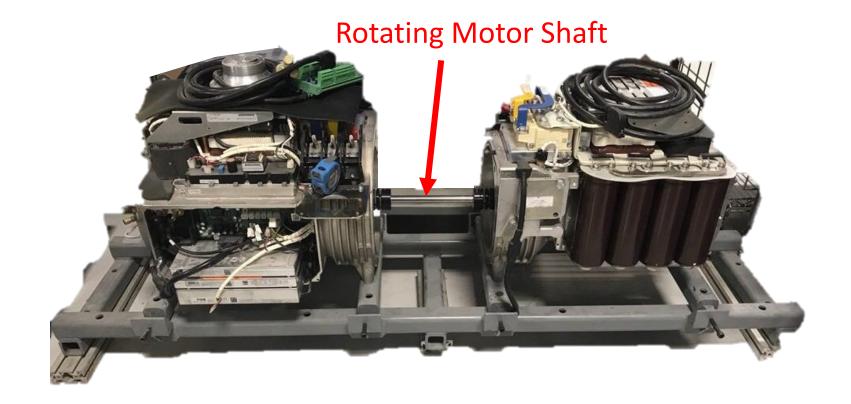
Virtual Design Review II

David Balbuena, McLaren Beckwith, Emily Simmons

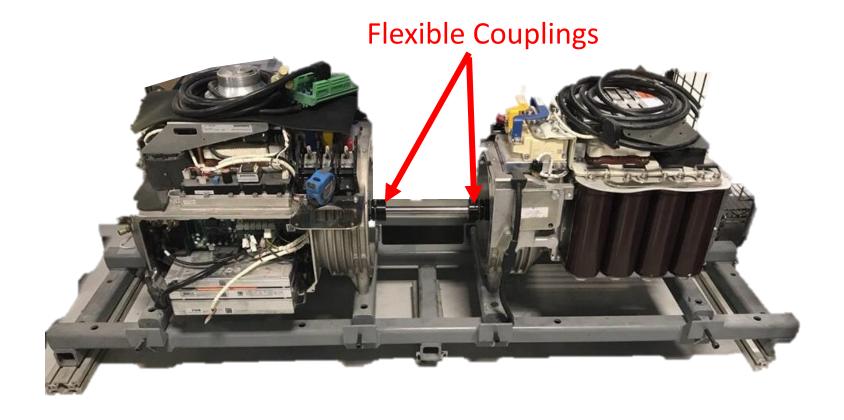
Emily Simmons PROJECT RECAP

Project Scope

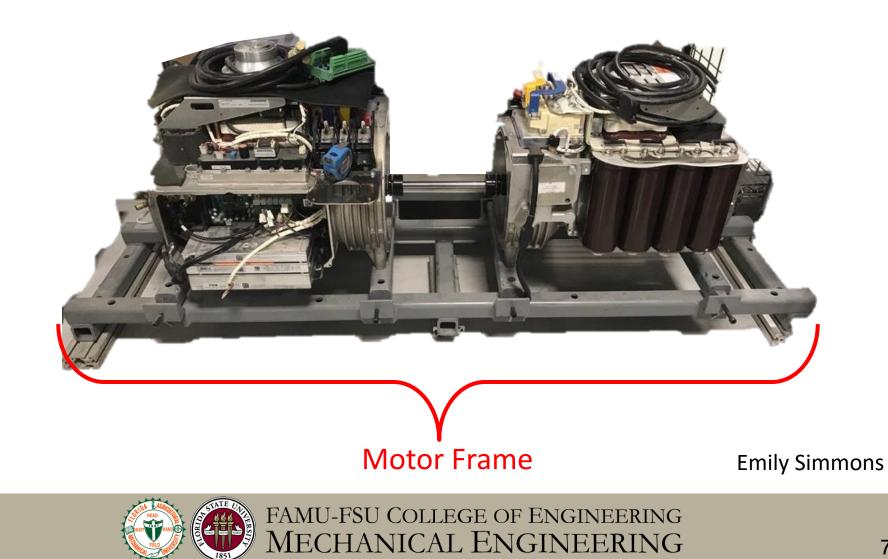
 Design a system that can measure motor efficiency at standard operating speeds for various Danfoss Turbocor compressors



Emily Simmons



Emily Simmons



Emily Simmons

Functional Decomposition

		Main Functions		
		Measure Motor Efficiency	Hold the Weight of Motor Testing System	
	Operate at standard motor speeds			
-Functions	Attach a safety shield			
	Measures torque with a torque transducer			
	Build with appropriate material			
	Add accessible E-stops			
	Maintain stability			
	Prevents operator from handling tester while testing			

Emily Simmons TARGET CATALOG

Measure Motor Efficiency:

Main Function	Sub-Functions	Type of Target	Target
Measure motor	Operate at standard motor speeds	Speed	7,000 - 40,000 rpm
	Measures torque with a torque transducer	Speed, Torque	40,000 rpm, 100 Nm

Emily Simmons

Hold the Weight of the System:

Main Function	Sub-Functions	Type of Target	Target
Hold the weight of	Build with appropriate material	Mass	272 kg
motor testing system	Maintain stability	Radial Force	890 N

Emily Simmons

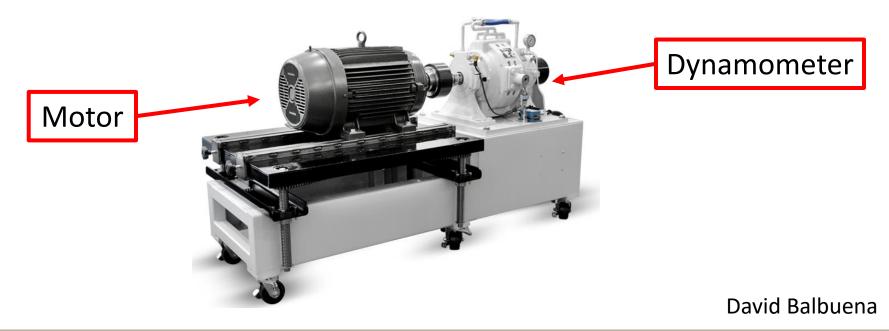
Protect the Operator:

Main Function	Sub-Functions	Type of Target	Target
	Attach a safety shield	Length	0.61 m x 0.61 m x 0.5 m
Protect operator while	Build with appropriate material	Impact Energy	13 kJ
testing	Add accessible E-stops	Number of E-stops	1 E-Stop
	Prevents operator from handling tester while testing	Length	0.172 m

Emily Simmons

David Balbuena

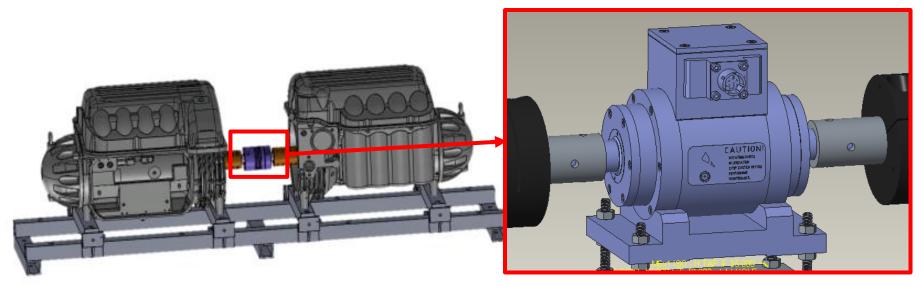
CONCEPT GENERATION: MOTOR TORQUE MEASUREMENT



Motor Torque Measurement

Dynamometer

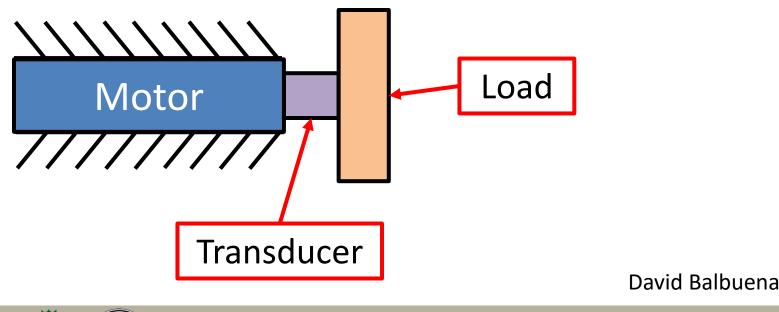
- Torque transducer between coupled motor/generator system
- Torque transducer with some fixed inertia



Motor Torque Measurement

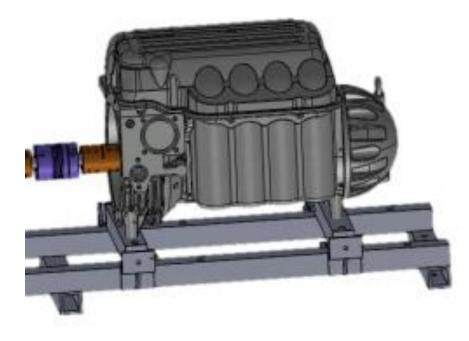
> Dynamometer

- Torque transducer between coupled motor/generator system
- Torque transducer with some fixed inertia


David Balbuena

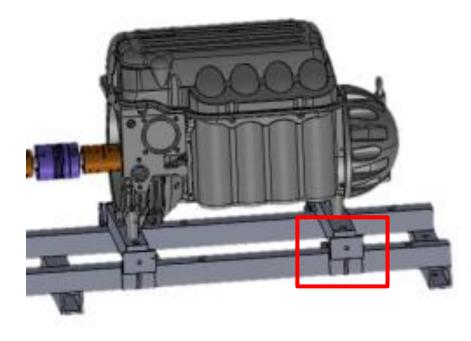
Motor Torque Measurement

- > Dynamometer
- Torque transducer between coupled motor/generator system
- Torque transducer with some fixed inertia

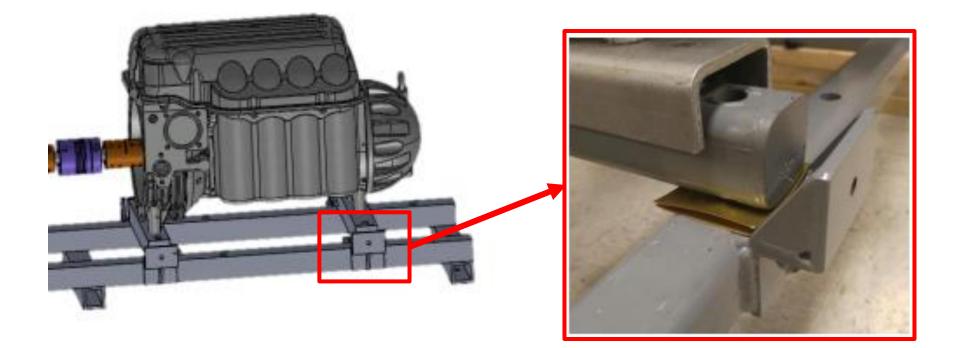


David Balbuena

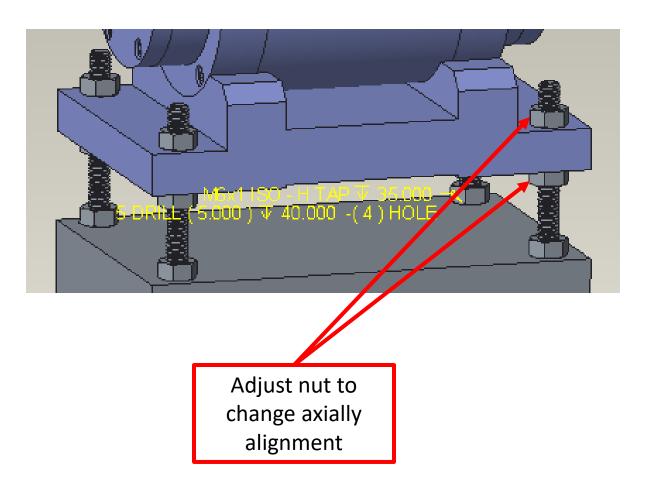
CONCEPT GENERATION: SHAFT ALIGNMENT



David Balbuena



David Balbuena



David Balbuena

David Balbuena

McLaren Beckwith

CONCEPT GENERATION: COUPLING

Zero Max Double Clamp A1C Coupling
 Custom Made Carbon Fiber Coupling
 Lovejoy 90-6 SU Coupling

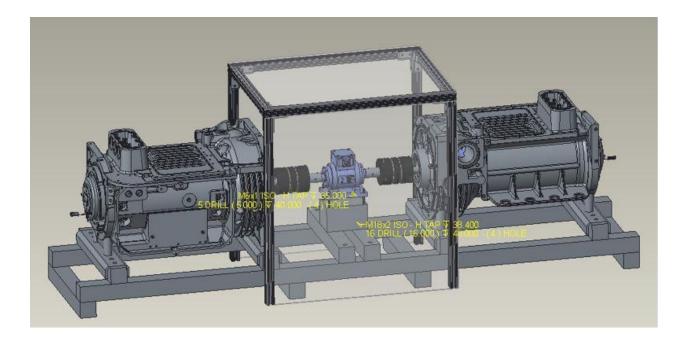
McLaren Beckwith

Zero Max Double Clamp A1C Coupling
 Custom Made Carbon Fiber Coupling
 Lovejoy 90-6 SU Coupling

McLaren Beckwith

Zero Max Double Clamp A1C Coupling
 Custom Made Carbon Fiber Coupling
 Lovejoy 90-6 SU Coupling

McLaren Beckwith


McLaren Beckwith

CONCEPT GENERATION: SAFETY

Partially Enclosed System Fully Enclosed System

McLaren Beckwith

Partially Enclosed System Fully Enclosed System

McLaren Beckwith

McLaren Beckwith

NEXT STEPS

Concept Selection

- Compare concept ideas to targets and choose best option
- ➢ Project Plan
 - Mapping out tasks for the design project for the spring semester

McLaren Beckwith

References

- Aponinuola, F., De La Rosa, J., Jurko, A., Pullo, J. (2017, April 21). *Final Report Team 05 Motor Test Rig.* [PDF document]. Retrieved from https://www.eng.famu.fsu.edu/me/senior_design/2017/team05/deliverables/Final%20Report%208 https://www.eng.famu.fsu.edu/me/senior_design/2017/team05/deliverables/Final%20Report%208 https://www.eng.famu.fsu.edu/me/senior_design/2017/team05/deliverables/Final%20Report%208 https://www.eng.famu.fsu.edu/me/senior_design/2017/team05/deliverables/Final%20Report%208 https://www.eng.famu.fsu.edu/me/senior_design/2017/team05/deliverables/Final%20Report%208 https://www.eng.famu.fsu.edu/me/senior_design/2017/team05/deliverables/Final%20Report%208
- Nix, D. (2017, July). Emergency Stops What's so Confusing About That? Retrieved from http://machinerysafety101.com/2009/03/06/emergency-stop-whats-so-confusing-aboutthat/
- Occupational Safety & Health Administration. Chapter 1 Basics of Machine Guarding. Retrieved from <u>https://www.osha.gov/Publications/Mach_SafeGuard/chapt1.html</u>
- Schicker, R., Wegener, G. (2002). *Measuring Torque Correctly.* no. ISBN 3-00-008945-4.
- Zero-Max Inc. Single Clamp Type Aluminum A1C Hubs 6A18-A1C. Retrieved from <u>https://www.zero-max.com/product_info.php?products_id=6a18-a1c&cPath=1_2_3_6&cid=aaac-single-clamp-type-aluminum-a1c-hubs&unit=metric</u>
- Lovejoy Inc. SU-6 Type Complete Couplings Metric Bores. Retrieved from
- http://catalog.lovejoy-inc.com/item/industrial-disc-couplings-su-type/su-6-type-industrial-couplinghubs-w-keyway-metric/69790499337
- California Department of General Services. Maximum Allowable Load for 10 Gage and 12 Gage Wires. [PDF document]. Retrieved from <u>https://www.documents.dgs.ca.gov/dsa/pubs/IR_25-</u> <u>1_rev09-23-10.pdf</u>
- Hydrosight. (2017, March 7). Glass vs. Acrylic: A Comparison. Retrieved from <u>http://www.hydrosight.com/glass-vs-acrylic-a-comparision/</u>
- Creative Mechanisms. Everything You Need to Know About Polycarbonate (PC). Retrieved from https://www.creativemechanisms.com/blog/everything-you-need-to-know-about-polycarbonate-pc

Questions?

ADDITIONAL INFORMATION

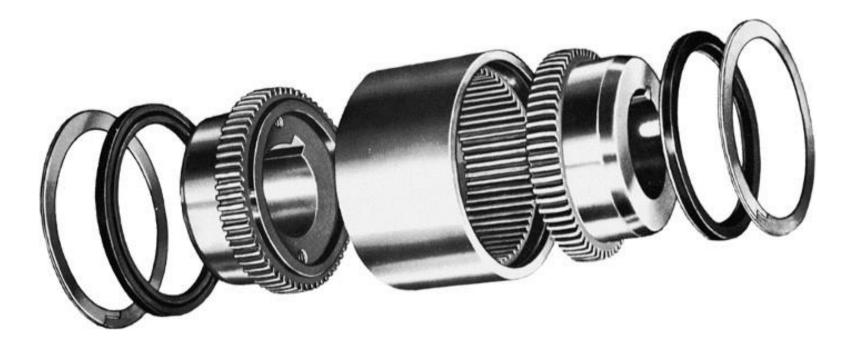
Impact Energy Calculation

 $m = 0.907 \ kg$ d = 0.08128 meters $r = \frac{d}{2} = \frac{0.08128}{2} = 0.04064 \ meters$ $\omega = 40,000 \ rpm = 4,188 \ rad/s$

 $v = \omega * r = 4,188 * 0.04064 = 170 m/s$

$$E = \frac{1}{2}mv^2 = \frac{1}{2} (0.907)(170)^2 = 13,000 J = 13 kJ$$

Emily Simmons



TYPES OF COUPLINGS

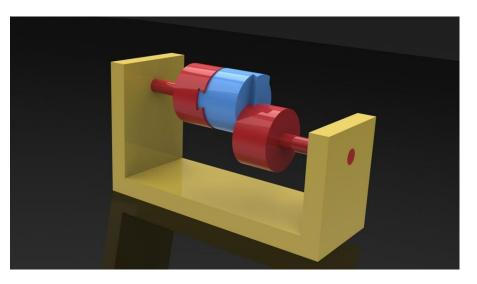
Gear Coupling

McLaren Beckwith

Beam Coupling

McLaren Beckwith

Disk Coupling


McLaren Beckwith

Oldham Coupling

McLaren Beckwith

David Balbuena

TORQUE TRANSDUCER SELECTION

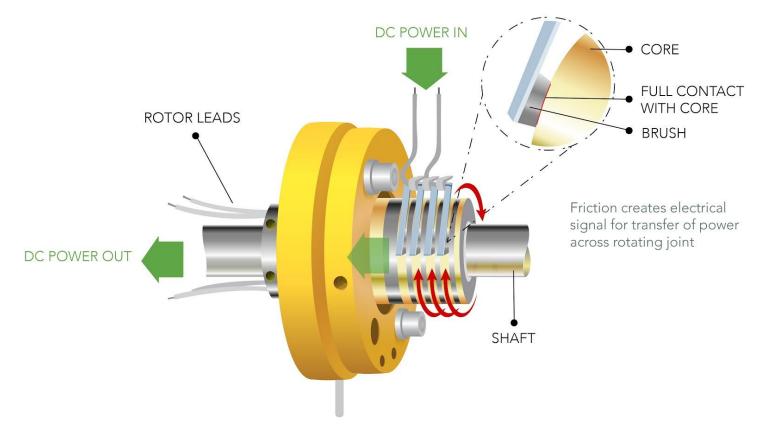
Mechanical Design

- Contact bearings
 - Iow speed only
 - wear over time

Non-contact bearings

can handle high speed

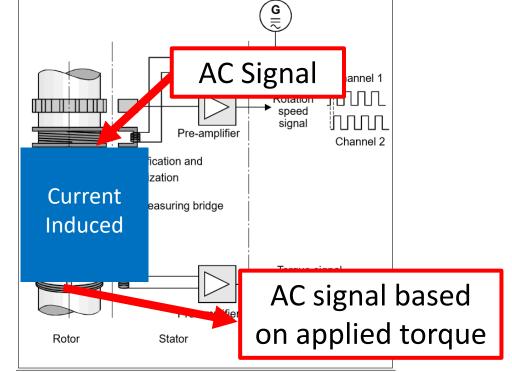
David Balbuena



Signal Transmission

➢Slip Ring

David Balbuena



Signal Transmission

Non contact transmission

Uses electromagnetic induction to transmit signal frequency

David Balbuena

