MLI Pressure Sensor Design Review 4

Team 11 Members: Qinjie Chen Justin DiEmmanuele Jordan Eljaiek Benjamin Hallstrom Marie Medelius

Senior Design Coordinator: Shayne McConomy

Introduction

Jordan Eljaiek Team Lead

Justin DiEmmanuele Secretary

Ben Hallstrom Assistant Team Lead

Qinjie "Sam" Chen Design Lead

Marie Medelius Treasurer

Project Recap

Presenter: Jordan Eljaiek

Background Information

- Pressure sensor must interfere as little as possible with its surroundings while measuring residual gas within a multi-layer radiation blanket.
- NASA Marshall Space Flight Center (MSFC)
- Advisors:

Jordan Eljaiek

- Jim J. Martin, James W. Smith
- Dr. Wei Guo

Multi-Layer Insulation (MLI)

- Cryogenic tanks use multi-layer insulation blankets to protect from thermal radiation during time in space
- Composed of 30 or more layers of alternating Double Aluminized Mylar and polyester fabric mesh placed in a cryostat.

Figure 1: Multi-layer insulation blankets

Jordan Eljaiek

MLI Pressure Sensor

- Develop a pressure sensor that can measure the vacuum within interstitial areas.
- After vacuum, if residual gas still remains between each layer, sensor should read a pressure reading different than the pressure reading within the vacuum chamber.

	Multiber	
	Vacuum Pressure	
Vacuum Rump Depressurizing		Calorimeter (Representative
Atmospheric 1994. Pressure		of Cryourne)
	More Resplual Less Gas Escape Residua Gas Esc	lape

Figure 2: Pressure Gradient Illustration

Jordan Eljaiek

Project Constraints

- 1. Measure from 760 torr to 10e-4 torr.
- 2. Operate at temperatures as low as 77K.
- 3. Sample at least once every second.
- 4. Avoid interference with MLI components.

Hot-Filament Ion Gauge

Operation

- A stream of electrons is emitted from cathode.
- If there is gas present, electrons will strike molecules and knock out electrons, creating a larger current.
- Pressure is proportional to the amount of gas present.

Why Hot-Filament Was Chosen

- The ion filament sensor works at extreme vacuum pressures down to 10e-3 torr.
- There is no mechanical dependency on strain that could be interrupted by temperature changes.
- Additional benefits include minute size, high sampling rate, and high resolution.

Jordan Eljaiek

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Figure 4: Standard Industry Ion Gauge.

Transition to Cold Cathode Gauge

- The Hot-Filament ion gauge met the constraints of the project scope.
- Operating temperature of the filament would release too much local heat into the measured area.
- The filament typically operate in a temperature range from 1,800°C to 2,500°C.
- Such high, concentrated heat would increase the pressure in the measured area.

Scope Alteration

- Originally Scope:
 - Measure from 760 to 10e-4 torr.
- New Altered Scope:
 - Measure from 10e-3 to 10e-5 torr.
- Pressure in the blanket typically will get to at least 10e-3 torr.
- The Pirani gauge is utilized for approximately 760 to 10e-3 torr.

Cold Cathode Ion Gauge (CCG)

Benefits	Disadvantages						
Generates a minimal amount of heat.	Cost valuable time to switch focus.						
Typically measures higher vacuum with more accuracy.	More complicated physics to research and design around.						
Requires less parts.							

Jordan Eljaiek

Electric Field in an CCG

- Electric field and magnetic field work together to trap electrons.
- Anode has a positive charge whereas the cathode has a negative charge.
- Electrons will be emitted and accelerated from the cathode to the anode.
- High initial voltage difference (at least 2,000 V) across the anode and cathode will produce a plasma.
- The plasma will complete the circuit and act as a resistor.
- Ionized molecules will be attracted to the cathode and will neutralize.

Figure 5: Diagram of Cold Cathode gauge theory.

Figure 6: Behavior of electrons between plates.

Jordan Eljaiek

Magnetic Field in a CCG

- Magnetic field typically used is 1-2 kG.
- Magnets are oriented so that the field it parallel to the orientation of the anode (perpendicular to the electric field).
- Will increase the path-length of electrons and thus the probability that they will collide with molecules and ionize them.

Figure 7: Magnetic field behavior.

Figure 8: Behavior of an electron around a magnetic field.

Gauge Design, Reference Gauge & Supporting Hardware

Presenter: Qinjie Chen

Design Features

- Inverted magnetron ion gauge provided by NASA.
- Will utilize the tungsten anode and diode.
- Our design will mimic cross section of this sensor.
- We will likely lose sensitivity but not enough to make the data measured useless.

Figure 9: Exploded view of gauge supplied by NASA.

Qinjie Chen

Design Features

- Two cathodes used to double plasma length.
- Anode utilized for electron distribution.
- Two Neodymium magnets orientated to create a magnetic field.
- Wire soldered to anode provides voltage.
- Wire soldered to cathode returns current reading.

Figure 10: Schematic of the ion gauge assembly.

Qinjie Chen

Pirani Thermal Conductivity

- A Pirani gauge, supplied by NASA will be used as a reference gauge.
- Utilizes the thermal conductivity of gases.
- Operates on a Wheatstone bridge platform.
- One filament exposed to atmosphere, other filament remained in vacuum.
 - Filament's sensitivity to pressure change shows in its resistance fluctuations.
- Bottom two resistors set equally to one another.
- Voltage across Wheatstone bridge will correlate with pressure reading.

Qinjie Chen

Pirani Diagram

Figure 11: Pirani Thermal Conductivity Wheatstone

Qinjie Chen

Design Features (Cont.)

- Cold Cathode Ion Gauge connected to reliable DC Voltage box.
- CCG Meter is responsible for supplying voltage to the anode.
- Able to achieve at most 300 V.

Figure 12: Power supply and analog data collector.

Qinjie Chen

Design Features (Cont.)

- Cold Cathode Gauge Meter is connected to the Voltmeter and LabVIEW GBIB-USB-HB (DAQ Box)
- The Voltmeter will read the amount of voltage.
- Will convert from analog data to digital data.
- GBIB-USB-HB responsible for transferring the voltage reading.
- GBIB-USB-HB is connected to a laptop with LabView.
- Proper calibration will be ensured with a reference pressure reading from a Pirani gauge.

Figure 13: Voltmeter for data conversion.

Qinjie Chen

Testing Chamber & Part List

Presenter: Benjamin Hallstrom

Figure 15: Pirani Gauge and T-bar connection supplied by NASA

Figure 14: Vacuum Test Chamber

Ben Hallstrom

Figure 18: Dewar

- ID 4 ½"
- OD 7"
- Depth 24"
- 6 3/8" Bolt Pattern
- 1⁄4" Bolts

Ben Hallstrom

Figure B6: CF Half Nipple

Figure B7: Passthrough

Figure B1: Vacuum Test Chamber

Ben Hallstrom

Overall Parts List

Table 1: Parts List									
Part	Quantity	Source							
Pirani Gauge	1	NASA							
T-Bar w/ CF Fitting	1	NASA							
Copper Gaskets	3	NASA							
Dewar	1	Borrow from MS&T at NHMFL							
CF to KF Adapter	1	Borrow from MS&T at NHMFL							
Vacuum Pump	1	Borrow from MS&T at NHMFL							
Top Plate	1	Purchase and machine							
Top Plate CF Adapter	1	Purchase							
Top Plate Ultra Torr Passthrough	2	Purchase							
Neodymium Magnets	2	Purchase							
Thermal-Resistant Wire	1 spool	Purchase							
Tungsten Rods	2	Purchase							
Gauge Assembly Box	1	3D Print							

Ben Hallstrom

Conclusion & Timeline

Presenter: Jordan Eljaiek

Timeline

	Ta	able 2:	Time	line											
	Major Tasks	Project Completed By: April 12, 2018													
1	Determine the Necessary Components and Materials	•													
2	Iterate CAD Designs		•	•	0	0									
3	Research Part Costs/ Create Bill of Materials				•	•									
4	Buy/Order Parts					0									
5	Build Prototype of Cold Cathode Ion Gauge						0	0	0						
6	Determine Where to Borrow LabView/ Modify Block Diagram for LabView					•				0	0				
7	Determine How to Acquire Supporting Hardware					•				0					
8	Final Testing/Prototyping										0	0	0		
		21-Jan-18	28-Jan-18	4-Feb-18	11-Feb-18	18-Feb-18	25-Feb-18	4-Mar-18	11-Mar-18	18-Mar-18	25-Mar-18	1-Apr-18	8-Apr-18	15-Apr-18	22-Apr-18
		1													

- Proactively securing hardware and other means to test device.
- Part list & Bill of Materials has been created.
- By Friday (2/23/18) we will have ordered all of the necessary parts.
- While parts are on the way, we will assemble the hardware and test chamber that has been secured.
- Need to CAD and submit drawings for the gauge assembly box to be printed.
- Machine Top Plate.

Jordan Eljaiek

Conclusion

- What we have accomplished since last presentation:
 - Acquired parts and means to vacuum test chamber capable of pressures below 10e-6 torr.
 - Adapted to project scope modifications and temperature constraints.
- Moving forward:
 - Ordering Parts
 - Building test chamber
 - Machine top plate
 - Send CAD model of gauge box to be printed
 - Setting up hardware
 - Testing pressure sensor and relating the readings to the reference gauges

Jordan Eljaiek

References

- Pirani Gage. Retrieved from <u>http://www.automationforum.co/2016/04/what-is-pirani-gauge.html</u>
- Hot-Filament Ion Gauge. Retrieved from
 <u>http://www.pchemlabs.com/product.asp?pid=4511</u>
- The I-Mag CCG Sensor. Retrieved from <u>https://www.mksinst.com/docs/UR/423Rebuild.aspx</u>
- CCG Theory Diagram. Retrieved from
 <u>http://www.jpvacinst.co.uk/ColdCathodeToughGaunge</u>
- Electrons in a magnetic field. Retrieved from http://www.schoolphysics.co.uk/age16-19/Atomic%20physics/Electron%20physics/text/Electron_motion_in_electric_and_ma_gnetic_fields/index.html

