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Background Information
• Pressure sensor must interfere as little as possible with its 

surroundings while measuring residual gas within a multi-layer 
radiation blanket.

• NASA Marshall Space Flight Center (MSFC)
• Advisors:

• Jim J. Martin, James W. Smith
• Dr. Wei Guo

Jordan Eljaiek 
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Multi-Layer Insulation (MLI)
• Cryogenic tanks use multi-layer insulation blankets to protect 

from thermal radiation during time in space
• Composed of 30 or more layers of alternating Double 

Aluminized Mylar and polyester fabric mesh placed in a 
cryostat.

Figure 1: Multi-layer insulation blankets

Jordan Eljaiek 
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MLI Pressure Sensor
• Develop a pressure sensor 

that can measure the 
vacuum within interstitial 
areas.

• After vacuum, if residual 
gas still remains between 
each layer, sensor should 
read a pressure reading 
different than the pressure 
reading within the vacuum 
chamber. Figure 2: Pressure Gradient Illustration

Jordan Eljaiek 
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Project Constraints

1. Measure from 760 torr to 10e-4 torr.
2. Operate at temperatures as low as 77K.
3. Sample at least once every second.
4. Avoid interference with MLI components.
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Hot-Filament Ion Gauge
• A stream of electrons is emitted from 

cathode.
• If there is gas present, electrons will 

strike molecules and knock out 
electrons, creating a larger current.

• Pressure is proportional to the amount 
of gas present.

• The ion filament sensor works at 
extreme vacuum pressures down 
to 10e-3 torr.

• There is no mechanical dependency on 
strain that could be interrupted by 
temperature changes.

• Additional benefits include minute size, 
high sampling rate, and high resolution.

Operation

Why Hot-Filament Was Chosen

Figure 3: Schematic of Ion Filament Design.

Figure 4: Standard Industry Ion Gauge.

Jordan Eljaiek 
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Transition to Cold Cathode Gauge
• The Hot-Filament ion gauge met the constraints of the project scope.

• Operating temperature of the filament would release too much local
heat into the measured area.

• The filament typically operate in a temperature range from 1,800ºC to
2,500ºC.

• Such high, concentrated heat would increase the pressure in the
measured area.

Jordan Eljaiek 
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Scope Alteration
• Originally Scope:

• Measure from 760 to 10e-4 torr.
• New Altered Scope:

• Measure from 10e-3 to 10e-5 torr.
• Pressure in the blanket typically will get to at least 10e-3 torr.
• The Pirani gauge is utilized for approximately 760 to 10e-3 torr.

Jordan Eljaiek 
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Cold Cathode Ion Gauge (CCG)

Benefits Disadvantages
Generates a minimal 
amount of heat.

Cost valuable time to 
switch focus.

Typically measures 
higher vacuum with more 
accuracy.

More complicated physics 
to research and design 
around.

Requires less parts.

Jordan Eljaiek 
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Electric Field in an CCG
• Electric field and magnetic field work 

together to trap electrons. 
• Anode has a positive charge whereas the 

cathode has a negative charge. 
• Electrons will be emitted and accelerated 

from the cathode to the anode.
• High initial voltage difference (at least 

2,000 V) across the anode and cathode 
will produce a plasma.

• The plasma will complete the circuit and 
act as a resistor.

• Ionized molecules will be attracted to the 
cathode and will neutralize.

Figure 5: Diagram of Cold Cathode 
gauge theory.

Figure 6: Behavior of electrons between plates.

Jordan Eljaiek 
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Magnetic Field in a CCG
• Magnetic field typically used is 1-2 kG.
• Magnets are oriented so that the field it 

parallel to the orientation of the anode 
(perpendicular to the electric field). 

• Will increase the path-length of electrons 
and thus the probability that they will 
collide with molecules and ionize them.

Figure 7: Magnetic field behavior.

Figure 8: Behavior of an electron 
around a magnetic field.

Jordan Eljaiek 
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Gauge Design, Reference 
Gauge & Supporting Hardware

Presenter: Qinjie Chen
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Design Features
• Inverted magnetron ion gauge provided 

by NASA.
• Will utilize the tungsten anode and diode.
• Our design will mimic cross section of 

this sensor.
• We will likely lose sensitivity but not 

enough to make the data measured 
useless.

Figure 9: Exploded view of gauge 
supplied by NASA.

Qinjie Chen 
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Design Features
• Two cathodes used to 

double plasma length.
• Anode utilized for electron 

distribution.
• Two Neodymium magnets 

orientated to create a 
magnetic field.

• Wire soldered to anode 
provides voltage.

• Wire soldered to cathode 
returns current reading.

Figure 10: Schematic of the ion gauge assembly.

Qinjie Chen 
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Pirani Thermal Conductivity
• A Pirani gauge, supplied by NASA will be used as a reference 

gauge.
• Utilizes the thermal conductivity of gases.
• Operates on a Wheatstone bridge platform.
• One filament exposed to atmosphere, other filament remained 

in vacuum.
• Filament's sensitivity to pressure change shows in its 

resistance fluctuations.
• Bottom two resistors set equally to one another.
• Voltage across Wheatstone bridge will correlate with pressure 

reading.

Qinjie Chen 
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Pirani Diagram

Figure 11: Pirani Thermal Conductivity Wheatstone

Qinjie Chen 
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Design Features (Cont.)
• Cold Cathode Ion Gauge connected to reliable DC Voltage box.
• CCG Meter is responsible for supplying voltage to the anode.
• Able to achieve at most 300 V.

Figure	12:	Power	supply	and	analog	data	collector.

Qinjie Chen 
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Design Features (Cont.)
• Cold Cathode Gauge Meter is connected to the Voltmeter and 

LabVIEW GBIB-USB-HB (DAQ Box)
• The Voltmeter will read the amount of voltage.
• Will convert from analog data to digital data.
• GBIB-USB-HB responsible for transferring the voltage reading.
• GBIB-USB-HB is connected to a laptop with LabView.
• Proper calibration will be ensured with a reference pressure reading 

from a Pirani gauge.

Figure	13:	Voltmeter	for	data	conversion.

Qinjie Chen 
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Testing Chamber & Part List

Presenter: Benjamin Hallstrom
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Vacuum Test Chamber

Pirani 
Gauge

Vacuum Pump

Vacuum Pump 
Bleed

Dewar

Our 
Sensor

Pass-
through

Welds

CF to QF Adapter

Figure 14: Vacuum Test Chamber

Half Nipple Fitting

Ben Hallstrom 
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Vacuum Test Chamber
Pirani Gauge

Figure 15: Pirani Gauge and T-bar connection 
supplied by NASA

Figure 14: Vacuum Test Chamber

Ben Hallstrom 
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Vacuum Test Chamber

• 2 ¾” Conflat 
Flange (CF)

• KF-25, KF-40, 
or KF-50.

Figure 15: Pirani Gauge and T-bar connection 
supplied by NASA

Figure 16: CF/KF adapter

Figure 17: Vacuum Pump
Figure 14: Vacuum Test Chamber

Pirani Gauge Vacuum 
Pump

Vacuum 
Pump 
Bleed

CF to QF Adapter

Ben Hallstrom 
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Vacuum Test Chamber

• ID 4 ½’”
• OD 7”
• Depth 24”
• 6 3/8” Bolt 

Pattern
• ¼” Bolts

Figure 18: Dewar

Figure 14: Vacuum Test Chamber
Dewar

Ben Hallstrom 
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Vacuum Test Chamber

Pass-
through Welds

Figure B1: Vacuum Test Chamber
Figure B7: Passthrough

Figure B6: CF Half Nipple

Half Nipple Fitting

Ben Hallstrom 
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Overall Parts List
Part Quantity Source
Pirani	Gauge 1 NASA

T-Bar	w/	CF	Fitting 1 NASA

Copper	Gaskets 3 NASA

Dewar 1 Borrow	from	MS&T	at	NHMFL

CF	to	KF	Adapter 1 Borrow	from	MS&T	at	NHMFL

Vacuum	Pump 1 Borrow	from	MS&T	at	NHMFL

Top	Plate 1 Purchase	and	machine

Top	Plate	CF	Adapter 1 Purchase

Top	Plate	Ultra	Torr	Passthrough 2 Purchase

Neodymium	Magnets 2 Purchase

Thermal-Resistant	Wire 1	spool Purchase

Tungsten	Rods 2 Purchase

Gauge	Assembly	Box 1 3D	Print

Table	1:	Parts	List

Ben Hallstrom 
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Conclusion & Timeline
Presenter: Jordan Eljaiek
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Timeline

• Proactively securing hardware and other means to test device.
• Part list & Bill of Materials has been created.
• By Friday (2/23/18) we will have ordered all of the necessary parts.
• While parts are on the way, we will assemble the hardware and test 

chamber that has been secured.
• Need to CAD and submit drawings for the gauge assembly box to be 

printed.
• Machine Top Plate.

Jordan Eljaiek 

Table	2:	Timeline
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Conclusion
• What we have accomplished since last presentation:

• Acquired parts and means to vacuum test chamber capable of 
pressures below 10e-6 torr.

• Adapted to project scope modifications and temperature 
constraints.

• Moving forward:
• Ordering Parts
• Building test chamber
• Machine top plate
• Send CAD model of gauge box to be printed
• Setting up hardware
• Testing pressure sensor and relating the readings to the reference 

gauges

Jordan Eljaiek 
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