### MLI Pressure Sensor Design Review 5

Team 11 Members: Qinjie Chen Justin DiEmmanuele Jordan Eljaiek Benjamin Hallstrom Marie Medelius

Senior Design Coordinator: Shayne McConomy



### Introduction



Justin DiEmmanuele Secretary



Ben Hallstrom Assistant Team Lead



Marie Medelius Treasurer



Jordan Eljaiek Team Lead



Qinjie "Sam" Chen Design Lead



### **Project Recap**

Presenter: Ben Hallstrom



## **Background Information**

- NASA Marshall Space Flight Center (MSFC)
- Advisors:
  - Dr. Wei Guo
- Sponsors:
  - Jim J. Martin, James W. Smith
- Pressure sensor must interfere as little as possible with its surroundings while measuring residual gas within an MLI blanket.



## Multi-Layer Insulation (MLI)

- Cryogenic tanks use multi-layer insulation blankets to protect from thermal radiation during time in space
- Composed of 30 or more layers of alternating Double Aluminized Mylar and polyester fabric mesh placed in a cryostat.

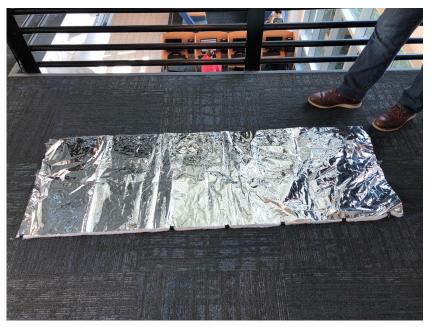



Figure 1: Multi-layer insulation blankets



#### **Ben Hallstrom**

## **MLI Pressure Sensor**

- Develop a pressure sensor that can measure the vacuum within interstitial areas.
- After vacuum, if residual gas still remains between each layer, sensor should read a pressure reading different than the pressure reading within the vacuum chamber.

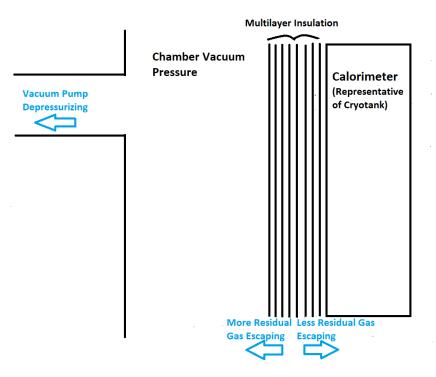
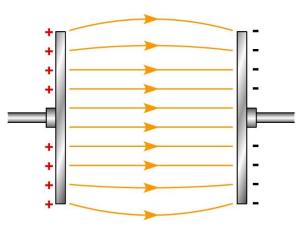
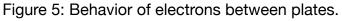



Figure 2: Pressure Gradient Illustration



#### **Ben Hallstrom**


## **Project Constraints**


- 1. Measure from 10e-3 torr to 10e-5 torr.
- 2. Operate at temperatures as low as 77K.
- 3. Sample at least once every second.
- 4. Avoid interference with MLI components.



## **Electric Field in an CCG**

- Electric field and magnetic field work together to trap electrons.
- Anode has a positive charge whereas the cathode has a negative charge.
- Electrons will be emitted and accelerated from the cathode to the anode.
- High initial voltage difference (at least 2,000 V) across the anode and cathode will produce a plasma.
- Ionized molecules will be attracted to the cathode and will be measured as current.





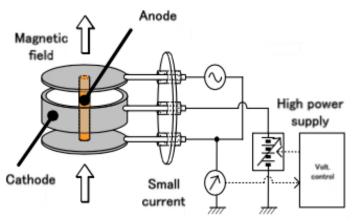



Figure 6: Diagram of Cold Cathode gauge theory.

#### **Ben Hallstrom**

## Magnetic Field in a CCG

- Magnetic field typically used is 1-2 kG.
- Magnets are oriented so that the field it parallel to the orientation of the anode (perpendicular to the electric field).
- Will increase the path-length of electrons and thus the probability that they will collide with molecules and ionize them.

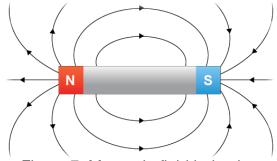



Figure 7: Magnetic field behavior.

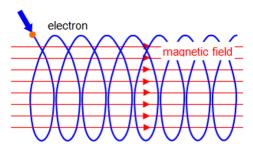



Figure 8: Behavior of an electron around a magnetic field.



#### **Ben Hallstrom**

## **Gauge Design**

Presenter: Justin DiEmmanuele



## **Design Features**

- Inverted magnetron ion gauge provided by NASA.
- Our design will mimic cross section of this sensor.
- We will likely lose sensitivity but not enough to make the data measured useless.



Figure 9: Exploded view of gauge supplied by NASA.



#### Justin DiEmmanuele

# **Design Features**

- Electrons emitted from cathode.
- Two Neodymium magnets orientated to create a magnetic field.
- Wire clamped to anode provides voltage.
- Wire clamped to cathode returns current reading.

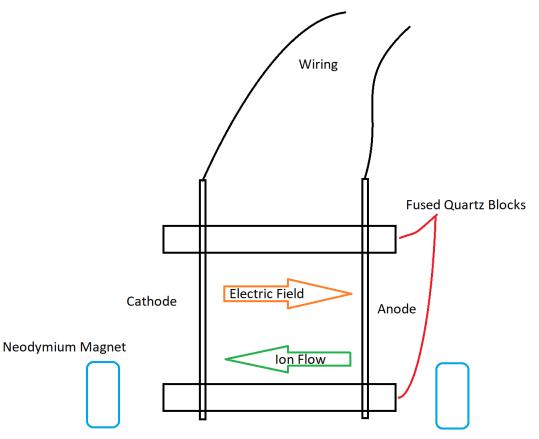
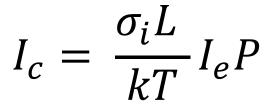



Figure 10: Schematic of the ion gauge assembly.



#### Justin DiEmmanuele


## Theory

Presenter: Justin DiEmmanuele



# Ion Gauge Equation

- $I_c \rightarrow$  Collector Current
- $\sigma_i \rightarrow$  Ionization Cross Section
- $L \rightarrow$  Length of ionizing space
- $k \rightarrow$  Boltzmann's Constant
- $T \rightarrow$  Temperature
- $I_e \rightarrow$  Electron Emission Current
- $P \rightarrow$  Pressure



# **Field Emission**

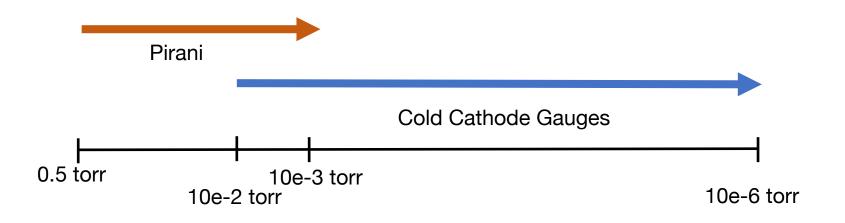
- $I_e$  partially dependent on field emission from cathode
- Described by Fowler Nordheim Tunneling Equations
- Current Emitted is a function of:
  - Area of cathode
  - Work function of material
  - Voltage

## Important to Note

- $I_e$  Term is tricky for CCG
  - Includes field emission from cathode and electrons in plasma
- Testing at high Temperature
  - Decrease in sensitivity
- In practice,  $I_c$  cannot be predicted easily

$$I_c = \frac{\sigma_i L}{kT} I_e P$$




### **Design of Experiment**

Presenter: Marie Medelius



## **Design of Experiment**

- Measurement devices used during test:
  - Our cold cathode gauge prototype
  - MSFC-supplied cold cathode gauge (control)
  - Pirani Gauge (higher pressures)

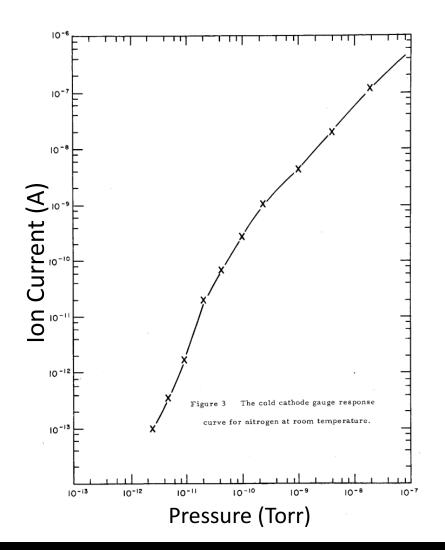




## **Design of Experiment**

- Measured outputs:
  - Ion current vs. pressure
  - Compare control gauge with prototype gauge to calibrate prototype
  - Compare with expected behavior
- Special considerations:
  - Goal Obtain reliable signals even with noisy data
  - Run experiment 5+ times to minimize noise and make sure results are consistent




## Expectation

 Because our design will have less space for a plasma cloud to form and sustain and lower electron emission, we predict we will have a lower value of *I<sub>e</sub>* and therefore will measure a lower lon current *I<sub>c</sub>* but the measurement will still be proportional to pressure.



## Expectation

- Should be able to reproduce same calibration curve over multiple tests
- May need to filter noise





## Concerns

- Ion current may be too small to measure with available equipment
- Ion current may be so small that random current variations are large compared to real value
- Small space may inhibit sustainable plasma to form



### Timeline

Table 2: Timeline

| Major Tasks                                                         |     | Project Completed By: April 27, 2018 |         |          |           |           |          |           |         |           |          |          |          |           |  |
|---------------------------------------------------------------------|-----|--------------------------------------|---------|----------|-----------|-----------|----------|-----------|---------|-----------|----------|----------|----------|-----------|--|
| Determine the Necessary Components and Materials                    | •   |                                      |         |          |           |           |          |           |         |           |          |          |          |           |  |
| Iterate CAD Designs                                                 |     | •                                    | •       | •        | •         |           |          |           |         |           |          |          |          |           |  |
| Research Part Costs/ Create Bill of Materials                       |     |                                      |         | •        | •         |           |          |           |         |           |          |          |          |           |  |
| Buy/Order Parts                                                     |     |                                      |         |          | •         |           |          |           |         |           |          |          |          |           |  |
| Build Prototype of Cold Cathode Ion Gauge                           |     |                                      |         |          |           | •         | •        | •         | •       | 0         |          |          |          |           |  |
| Determine Where to Borrow LabView/ Modify Block Diagram for LabView |     |                                      |         |          | •         |           |          |           | •       | 0         |          |          |          |           |  |
| Determine How to Acquire Supporting Hardware                        |     |                                      |         |          | •         |           |          |           | •       |           |          |          |          |           |  |
| Final Testing/Prototyping                                           |     |                                      |         |          |           |           |          |           |         | 0         | 0        | 0        | 0        | 0         |  |
|                                                                     |     |                                      |         |          |           |           |          |           |         |           |          |          |          |           |  |
|                                                                     | œ   | 8                                    | 80      | 18       | æ         | 8         | ~        | 80        | 18      | 8         | ~        | ~        | 18       | æ         |  |
|                                                                     | 5   | 5                                    | Ť       | 2        | 5         | 5         | Ť        | Ξ         | Ξ       | 5         | Ť        | ÷        | Σ        | Ξ         |  |
|                                                                     | Jan | Jan                                  | 4-Feb-1 | 11-Feb-' | 18-Feb-18 | 25-Feb-18 | 4-Mar-18 | 11-Mar-18 | 18-Mar- | 25-Mar-18 | 1-Apr-18 | 8-Apr-18 | 15-Apr-' | 22-Apr-18 |  |
|                                                                     | 54  | <u>3</u> 8                           | 4-      | ÷        | 8         | 5-        | 4-1      | É         | 8       | 5-        | ÷        | 8        | 4        | 2-        |  |
|                                                                     |     |                                      |         |          |           |           |          | •         | •       |           |          |          |          |           |  |
|                                                                     |     |                                      |         |          |           |           |          |           |         |           |          |          |          |           |  |

- Building prototype
- Gathering supplies provided by Mag Lab in preparation
- Finalizing CAD drawings for dewar top plate machining
- Final testing will be done in next week