MLI Pressure Sensor Virtual Design Review 1

Team 11 Members: Qinjie Chen Justin DiEmmanuele Jordan Eljaiek Benjamin Hallstrom Marie Medelius

Senior Design Coordinator: Shayne McConomy

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Introduction

Ben Hallstrom Team Lead

Jordan Eljaiek Assistant Team Lead

Qinjie "Sam" Chen Design Lead

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Introduction

Marie Medelius Treasurer

Justin DiEmmanuele Secretary

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Description & Background

- Compact pressure sensing device
- Measure Multi-Layer Insulation (MLI) interstitial vacuum
 - Alternating layers of Double Aluminized Mylar (DAM) and Dacron spacers
 - Placed in vacuum sealed wall
- Measure 760 torr to 10^{-4} torr

Description & Background

- Radiation protection of cryogenic propellant tanks for NASA
 - Spacecraft & satellites
- Pressure needs to be less than 10^{-3} torr
 - At higher pressure the residual gas provides increasing thermal conductivity
- Measure ability to achieve vacuum

Project Scope

- Key Goals
 - Measure 760 torr to 10-4 torr
 - Minimize Size
 - Minimize Power Consumption
- Primary Market
 - Aerospace industry
 - NASA-Marshall Space Flight Center (MSFC)
- Secondary Market
 - Cryogenic research
 - Meat-packing industry
 - Meteorological field
 - Nuclear energy field

Customer Needs

- 1. Measure 760 torr to 10^{-4} torr
- 2. Operate at 77K
- 3. Minimally invasive to the MLI blanket
- 4. Sample 1 per second
- 5. Minimize power consumption
- 6. Minimal parts, wires and size

Functional Decomposition

- Must react to a change in pressure
- Has to output a signal that is proportional to the change in pressure
- Take a sample once every second
- Avoid interference with MLI components
- Maintain integrity under all experienced temperatures

Resources

Bellini, S; Carvalho, J.; Johnson, S.; Kiefer, M. (2017). Development of a Compact Pressure Sensor for Multi-Layer Insulation in a Vacuum. Retrieved from https://www.eng.famu.fsu.edu/me/senior_design/2017/team 15/index.html.

McConomy, S. (2017). Senior Design Project Definition. Retrieved from https://famu-fsueng.blackboard.com

