
Mobile GPS Payload

Virtual Design Review 1 Travis Bruner Taylor D. Davis Raine Sagramsingh

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Introduction

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Background

Sponsor:

- Space Vehicles Directorate, Air Force Research Lab (AFRL)
 - Dr. Madeleine Naudeau Principal Investigator, Advanced GPS Technologies Program (AGT)

AFRL

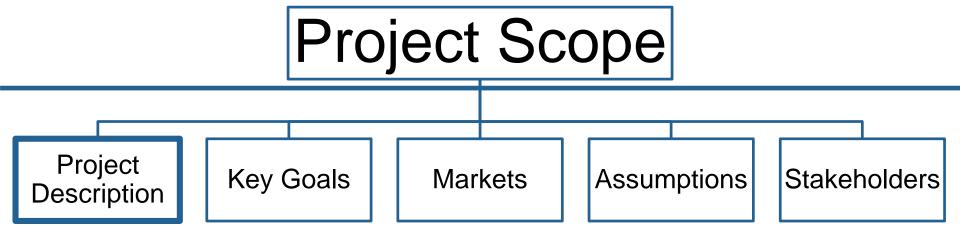
Dedicated to leading the discovery, development, and integration of warfighting technologies for our air, space and cyberspace forces.

➤ Space Vehicles Directorate

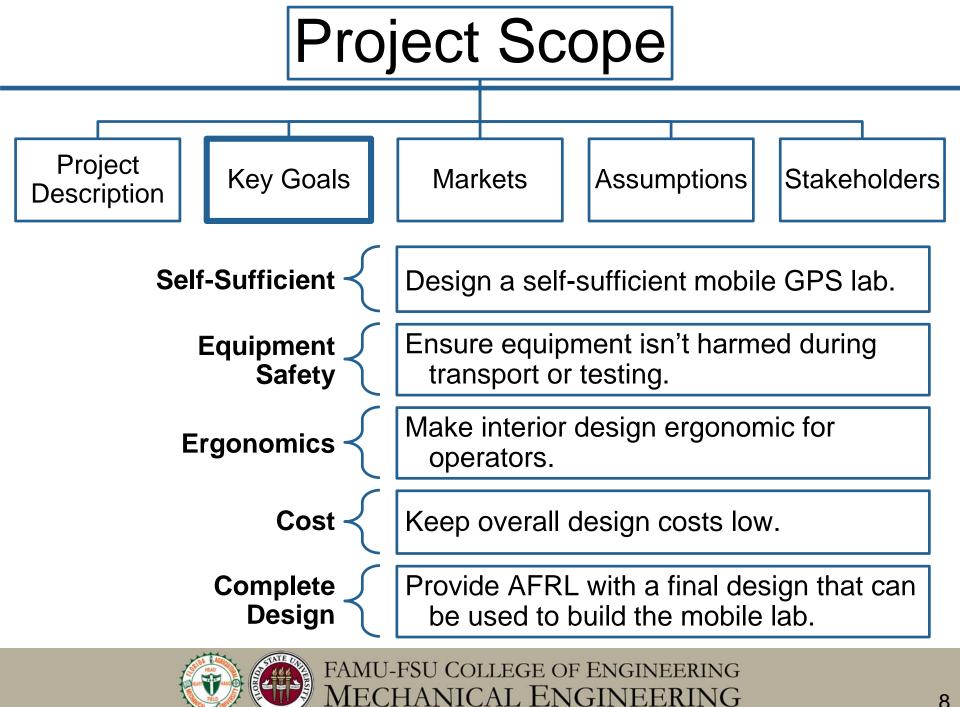
Kirtland AFB, New Mexico

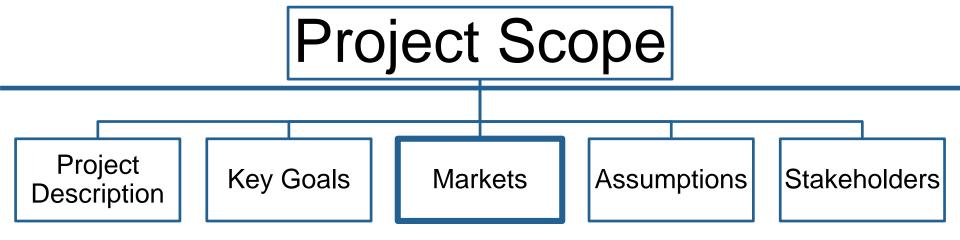
AGT

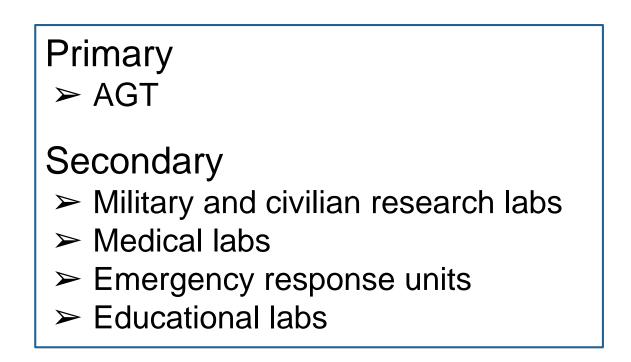
<u>Goal</u>: to plan, manage, and execute Positioning, Navigation, and Timing (PNT) portfolio that will advance the state-of-the-art of GPS and future PNT payloads.


2012	2019	2020	2021
AGT is established.	Component testing of next generation PNT equipment.	Live sky testing of equipment.	Integration of PNT components into full payloads.

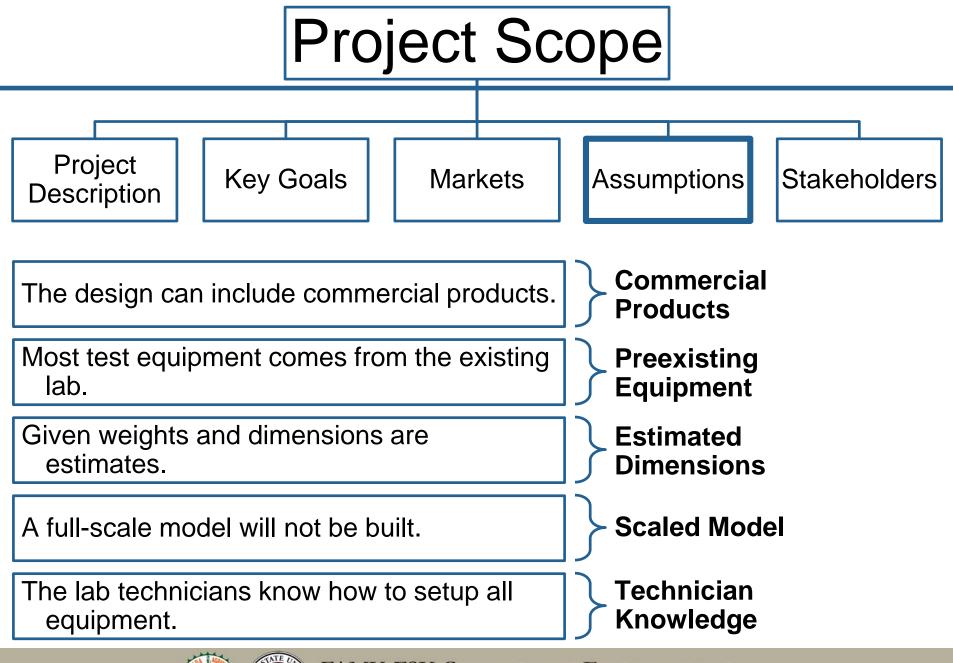
Project Brief


- AGT would like to mobilize their current lab and new equipment to allow for range and live sky testing.
- Plan to attend various military test exercises.
- Lab will support multiple operators and test stations.

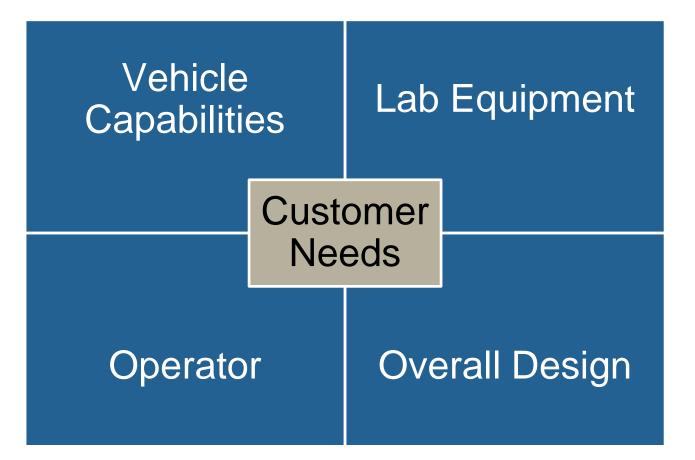




Design a mobile GPS lab for AFRL with the capability to test components of a position, navigation, and timing payload. The design will be cost effective, user friendly, and as simple as possible.



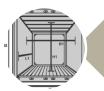
FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING


Project Scope

Project Description	Key Goals	Markets	Assumptions	Stakeholders

	AGT	Dr. Naudeau	Dr. Oates	Dr. McConomy	Dr. Shih
Sponsor	X	X			
Managers		X		X	
Experts	x	x	x		
Operators	X				
General Readers			x	x	X

Customer Needs



Vehicle Capabilities

The vehicle is capable of driving on unpaved roads.

The vehicle can transport all desired equipment.

The vehicle is self-sufficient.

The vehicle has protection against intrusion.

The vehicle can withstand various climates/environments.

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Lab Equipment

Lab equipment is easily loaded and unloaded.

The required antennas are supported.

Lab equipment can function inside of the vehicle.

The interior can accommodate varying sizes of equipment.

Equipment is not damaged in transit.

There is proper control of ESD.

Operator

The lab is technician friendly.

The interior conditions are ergonomic.

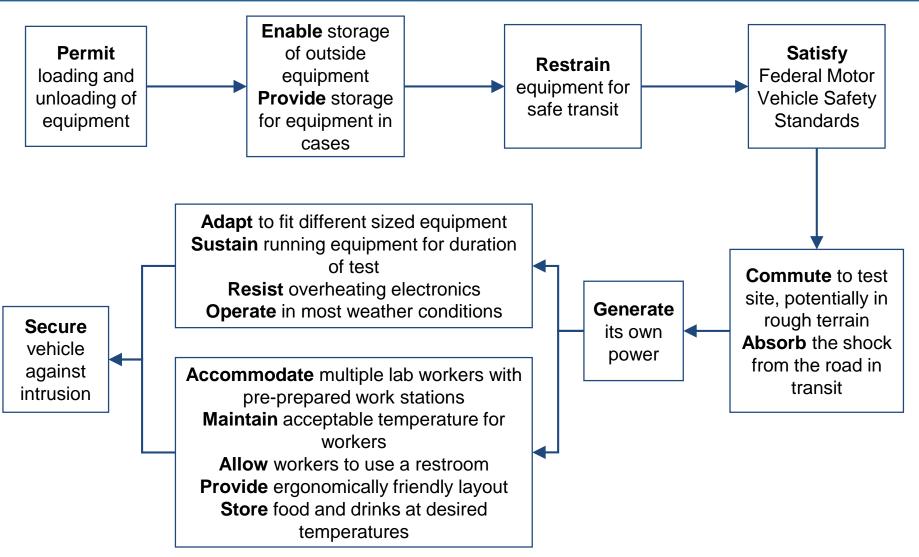
Operators are able to use a restroom on site.

There is ample test space.

There are workstations for multiple operators.

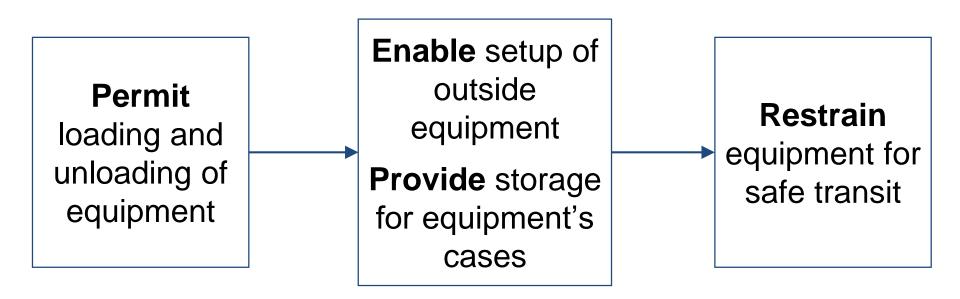
FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Overall Design

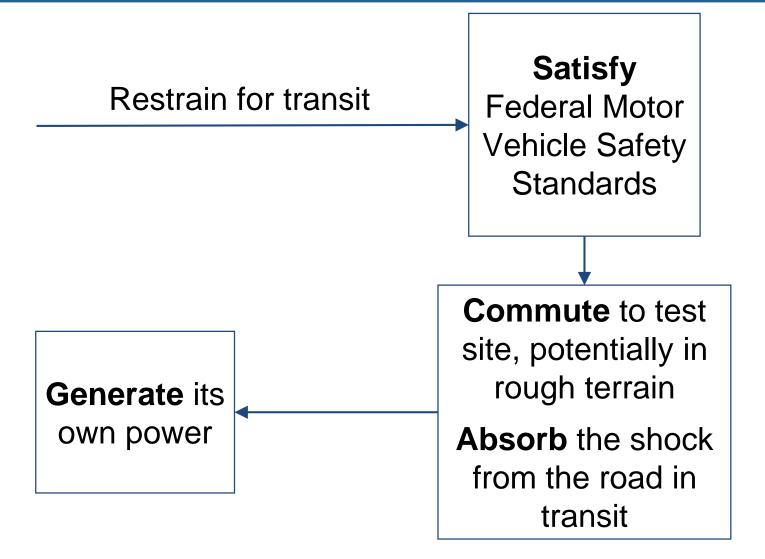

The design minimizes operational costs.

The design is versatile.

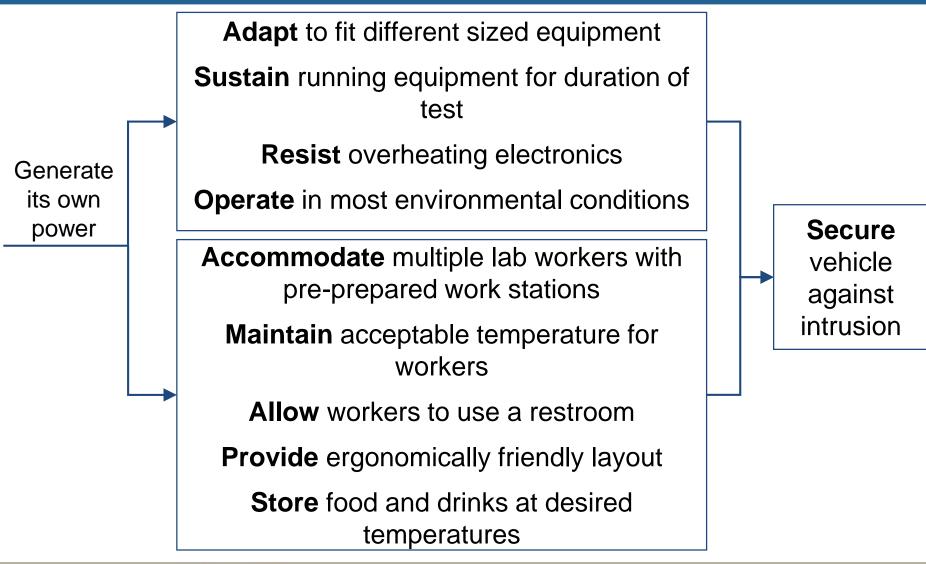
The design is reasonably priced.



FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING



FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING



FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Next Steps

Establish targets
Generate concepts
Vehicle Selection

Questions?

References

➢Dieter, G. E., & Schmidt, L. C. (2012). Engineering design. New York: McGraw-Hill Higher Education.

≻Air Force Research Lab. (n.d.). Retrieved from <u>https://teamafrl.afciviliancareers.com/</u>

➤White Sands Missile Range. (n.d.). Retrieved from <u>http://www.wsmr.army.mil/Pages/home.aspx</u>

≻Winnebago Industries. (n.d.). Retrieved from <u>https://winnebagoind.com/</u>

➤GPS Integration. (n.d.). Retrieved from <u>http://what-when-how.com/gps/gps-integration/</u>

≻746th Test Squadron announces. (2009, July 21). Retrieved from <u>http://www.holloman.af.mil/Article-Display/Article/318032/746th-test-squadron-announces-jamfest-2009/</u>

Shipping Container ISO 20ft 3D CAD Model. (n.d.). Retrieved from <u>https://www.3dcadbrowser.com/download.aspx?3dmodel=98159</u>

Vasta, R., Watson, M., & LeBlanc, K. (2011, September 23). NAVFEST: A Cost Effective Solution to GPS NAVWAR Testing. Retrieved from <u>https://www.ion.org/publications/abstract.cfm?articleID=9754</u>

Pseudolites preserve position information during GPS-denied conditions. (n.d.). Retrieved https://www.army.mil/article/169033/pseudolites_preserve_position_information_during_gps_de nied_conditions

Back-Up Slides

Acronyms

GPS	Global Positioning System	WSMR	White Sands Missile Range
ME	Mechanical Engineering	ESD	electrostatic discharge
ECE	Electrical/Computer Engineering	FMVSS	Federal Motor Vehicle Safety Standards
AFRL	Air Force Research Lab	ORDWG	On-Orbit Reprogrammable Digital Waveform Generator
AGT	Advanced GPS Technologies	SWaP	size, weight, and power
AFB	Air Force base	DoD	Department of Defense
711th HPW	711th Human Performance Wing	GVWR	Gross Vehicle Weight Rating
AFOSR	Air Force Office of Scientific Research	NHTSA	National Highway Traffic Safety Administration
PNT	position, navigation, and timing		

AFRL Locations

- Edwards AFB Southern California
- ≻Kirtland AFB Albuquerque, New Mexico
- Air Force Maui Optical and Supercomputing Haleakala Observatory – Maui, HI
- ≻Ft. Sam Houston San Antonio, Texas
- Eglin AFB near Destin/Fort Walton Beach, Florida
- ≻Wright-Patterson AFB Dayton, Ohio
- ≻Arlington, Virginia
- ≻Rome, New York

AFRL Directorates

Directorate	Function
711 Human Performance Wing	Human-centric warfare wing focused on research, education, and consultation.
AF Office of Scientific Research	Broad-based research into aerospace-related science and engineering.
Aerospace Systems	Fuels research, structural testing, compressor research, rocket testing, supersonic and subsonic wind tunnels, flight simulation, and more.
Directed Energy	Laser systems, high power electromagnetics, weapons modeling and simulation, and directed energy and electro-optics for space superiority.
Information	Develops information technologies for aerospace command and control, and its transition to air, space and ground systems.
Munitions	Develops, demonstrates, and transitions science and technology for airlaunched munitions for defeating ground-fixed, mobile/relocatable, air, and space targets.
Materials & MFG.	Develops new materials, processes and manufacturing technologies for us in aerospace applications.
Sensors	Leads the discovery, development, and integration of affordable sensor and countermeasure technologies for the warfighter.
Space Vehicles	Develops and transitions space technologies for more effective, more affordable warfighter missions. Primary missions: space based surveillance and space capability protection.

Next Generation PNT Equipment

- ➤High power amplifiers
- ➤On-orbit Reprogrammable Digital Waveform Generators (ORDWG)
- ➤New antenna concepts
- ➤ Supporting electronics
- ► Algorithms and new signal combining methods
- Satellite bus technologies for increased resiliency and lower Size, Weight, and Power (SWaP)
- ➤Advanced cyber technology

Live Sky Testing

- Allows testing of GPS equipment in open air environment.
- > Operators can test in adverse environments.
 - jamming
 - spoofing

Pseudolite

 A word blend of pseudo and satellite.
Function like GPS but the signals are transmitted from the ground or low flying aircraft.

GPS

- ➤Can be used for testing or as a solution for operating in a GPS-denied environment.
- ➢ First proof of concept at White Sands, in 2011.

GPS

GPS

T

Pseudolite

GPS

NAVFEST

➤746th TS provides low-cost, realistic, GPS jamming scenarios for testing GPS-based navigation systems and training personnel in GPS-denied environments.

➤DoD agencies, defense contractors, civil organizations, foreign nations.

➤Drive, fly, or walk through jamming scenarios.

Budget

≻The sponsor wants the "most cost effective" design.

 \succ Costs to consider:

- Overall design costs
- Operational costs

> The design budget, not including the vehicle itself, is roughly 30,000.

≻Overall design budget is roughly \$150,000.

➤AGT would like us to provide a range of vehicle options depending on their capabilities, from the bare minimum to more luxurious.

Unpaved Roads

- Design will not include analysis of vehicle performance on unpaved roads.
 - Refer to commercial vehicle performance.
 - Gross Vehicle Weight Rating (GVWR) restrictions on the vehicles will be followed.

Fuel Capacity (gal.)	150
GCWR ⁶ (lbs.)	60,660
GVWR (lbs.)	45,660
GAWR - Front (lbs.)	15,660
GAWR - Rear (lbs.)	30,000
Wheelbase	279" + tag

Weight and Measures information for Winnebago Grand Tour.

Federal Motor Vehicle Safety Standards

- National Highway Traffic Safety Administration (NHTSA) regulations for motor vehicle performance.
 - Crash Avoidance
 - Crashworthiness
 - Post Crash Standards
- Commercially available vehicles meet these standards.

Vehicle Selection

