


Mobile GPS Payload

Virtual Design Review 2 Michael Connell Ricky Gal Raine Sagramsingh

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING Team 17

Introduction

2

Project Brief

- ➤ Sponsor:
 - Space Vehicles Directorate, Air Force Research Lab (AFRL) – Advanced GPS Technologies Program (AGT)

- Design a mobile GPS lab with the capability to test components of a position, navigation, and timing payload.
 - cost effective
 - user friendly
 - as simple as possible

Customer Need	Target		
The mobile lab is technician friendly.	Interior temperature of 68-77°F		
The lab has workstations for multiple operators.	Accommodate 1-3 test operators		
Lab equipment functions inside of the vehicle.	Equipment runs at 32-104°F		
The unit holds varying sizes of equipment.	Storage for racks of heights up to 6'		
The unit is calf sufficient	Provides at least 6kW of power		
The unit is self-sufficient.	Runs for 55 hours without recharge		
The vehicle withstands various environments.	Can withstand up to 75 mph winds		
Operators have access to a restroom on site.	Restroom within 5 min. drive		
The design provides a reasonably priced option.	Non-recurring costs: ~\$150,000		
The design minimizes operational costs.	Each deployment: < \$2,500		

Customer Need	Target
The mobile lab is technician friendly.	Interior temperature of 68-77°F
The lab has workstations for multiple operators.	Accommodate 1-3 test operators
Lab equipment functions inside of the vehicle.	Equipment runs at 32-104°F
The unit holds varying sizes of equipment.	Storage for racks of heights up to 6'
The unit is calf sufficient	Provides at least 6kW of power
The unit is self-sufficient.	Runs for 55 hours without recharge
The vehicle withstands various environments.	Can withstand up to 75 mph winds
Operators have access to a restroom on site.	Restroom within 5 min. drive
The design provides a reasonably priced option.	Non-recurring costs: ~\$150,000
The design minimizes operational costs.	Each deployment: < \$2,500

Customer Need	Target		
The mobile lab is technician friendly.	Interior temperature of 68-77°F		
The lab has workstations for multiple operators.	Accommodate 1-3 test operators		
Lab equipment functions inside of the vehicle.	Equipment runs at 32-104°F		
The unit holds varying sizes of equipment.	Storage for racks of heights up to 6'		
The unit is calf sufficient	Provides at least 6kW of power		
The unit is self-sufficient.	Runs for 55 hours without recharge		
The vehicle withstands various environments.	Can withstand up to 75 mph winds		
Operators have access to a restroom on site.	Restroom within 5 min. drive		
The design provides a reasonably priced option.	Non-recurring costs: ~\$150,000		
The design minimizes operational costs.	Each deployment: < \$2,500		

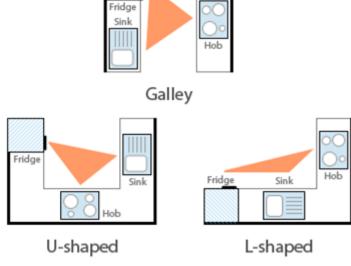
Customer Need	Target		
The mobile lab is technician friendly.	Interior temperature of 68-77°F		
The lab has workstations for multiple operators.	Accommodate 1-3 test operators		
Lab equipment functions inside of the vehicle.	Equipment runs at 32-104°F		
The unit holds varying sizes of equipment.	Storage for racks of heights up to 6'		
The unit is self-sufficient.	Provides at least 6kW of power		
The unit is sen-suncient.	Runs for 55 hours without recharge		
The vehicle withstands various environments.	Can withstand up to 75 mph winds		
Operators have access to a restroom on site.	Restroom within 5 min. drive		
The design provides a reasonably priced option.	Non-recurring costs: ~\$150,000		
The design minimizes operational costs.	Each deployment: < \$2,500		

Customer Need	Target		
The mobile lab is technician friendly.	Interior temperature of 68-77°F		
The lab has workstations for multiple operators.	Accommodate 1-3 test operators		
Lab equipment functions inside of the vehicle.	Equipment runs at 32-104°F		
The unit holds varying sizes of equipment.	Storage for racks of heights up to 6'		
The unit is calf sufficient	Provides at least 6kW of power		
The unit is self-sufficient.	Runs for 55 hours without recharge		
The vehicle withstands various environments.	Can withstand up to 75 mph winds		
Operators have access to a restroom on site.	Restroom within 5 min. drive		
The design provides a reasonably priced option.	Non-recurring costs: ~\$150,000		
The design minimizes operational costs.	Each deployment: < \$2,500		

Customer Need	Target		
The mobile lab is technician friendly.	Interior temperature of 68-77°F		
The lab has workstations for multiple operators.	Accommodate 1-3 test operators		
Lab equipment functions inside of the vehicle.	Equipment runs at 32-104°F		
The unit holds varying sizes of equipment.	Storage for racks of heights up to 6'		
The unit is self-sufficient.	Provides at least 6kW of power		
The unit is self-sufficient.	Runs for 55 hours without recharge		
The vehicle withstands various environments.	Can withstand up to 75 mph winds		
Operators have access to a restroom on site.	Restroom within 5 min. drive		
The design provides a reasonably priced option.	Non-recurring costs: ~\$150,000		
The design minimizes operational costs.	Each deployment: < \$2,500		

Customer Need	Target			
The mobile lab is technician friendly.	Interior temperature of 68-77°F			
The lab has workstations for multiple operators.	Accommodate 1-3 test operators			
Lab equipment functions inside of the vehicle.	Equipment runs at 32-104°F			
The unit holds varying sizes of equipment.	Storage for racks of heights up to 6'			
The unit is calf sufficient	Provides at least 6kW of power			
The unit is self-sufficient.	Runs for 55 hours without recharge			
The vehicle withstands various environments.	Can withstand up to 75 mph winds			
Operators have access to a restroom on site.	Restroom within 5 min. drive			
The design provides a reasonably priced option.	Non-recurring costs: ~\$150,000			
The design minimizes operational costs.	Each deployment: < \$2,500			

Customer Need	Target		
The mobile lab is technician friendly.	Interior temperature of 68-77°F		
The lab has workstations for multiple operators.	Accommodate 1-3 test operators		
Lab equipment functions inside of the vehicle.	Equipment runs at 32-104°F		
The unit holds varying sizes of equipment.	Storage for racks of heights up to 6'		
The upit is calf sufficient	Provides at least 6kW of power		
The unit is self-sufficient.	Runs for 55 hours without recharge		
The vehicle withstands various environments.	Can withstand up to 75 mph winds		
Operators have access to a restroom on site.	Restroom within 5 min. drive		
The design provides a reasonably priced option.	Non-recurring costs: ~\$150,000		
The design minimizes operational costs.	Each deployment: < \$2,500		



Customer Need	Target		
The mobile lab is technician friendly.	Interior temperature of 68-77°F		
The lab has workstations for multiple operators.	Accommodate 1-3 test operators		
Lab equipment functions inside of the vehicle.	Equipment runs at 32-104°F		
The unit holds varying sizes of equipment.	Storage for racks of heights up to 6'		
	Provides at least 6kW of power		
The unit is self-sufficient.	Runs for 55 hours without recharge		
The vehicle withstands various environments.	Can withstand up to 75 mph winds		
Operators have access to a restroom on site.	Restroom within 5 min. drive		
The design provides a reasonably priced option.	Non-recurring costs: ~\$150,000		
The design minimizes operational costs.	Each deployment: < \$2,500		

Concept Generation

- 1. Vehicle selection:
 - a. Motorhome
 - b. Camper Trailer
 - c. Enclosed Trailer
 - d. Shipping Container
 - e. Step Van
- 2. Interior Floor Plan
 - a. 3 different plans
 - b. Based off of Kitchen Work Triangle concept

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Michael Connell

Vehicle Concepts

Ricky Gal

Concept 1 - Motorhome

Concept	Interior temp	Restroom	1-3 operators	Storage of racks up to 6'	Overall cost of \$150,000	Deployment cost of \$2,500
Motor Home	X	X	Х	Х	Х	Х

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Concept 1 - Motorhome

PROS:

- ➤ Meets all targets
- Models come standard with:
 - Restroom
 - HVAC
 - Generator
- Toy hauler models have a ramp for easy loading
- ➤ All inclusive
 - No need for a separate tow vehicle
- Low deployment cost

CONS:

- ➤ Highest initial cost
- Regular maintenance associated with an automobile

Concept 2 - Camper Trailer

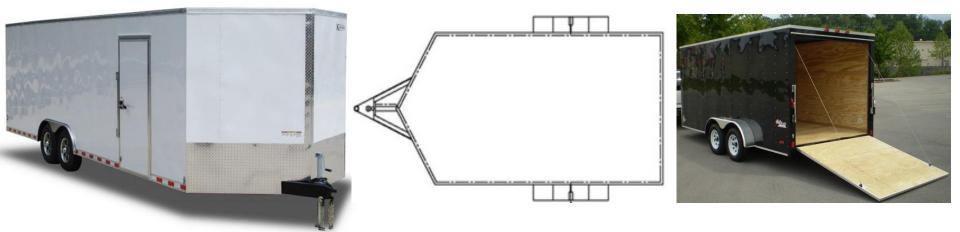
Cost: \$10,000+

Concept	Interior temp	Restroom	1-3 operators	Storage of racks up to 6'	Overall cost of \$150,000	Deployment cost of \$2,500
Camper Trailer	Х	х	Х	Х	Х	Х

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Concept 2 - Camper Trailer

PROS:


- ➤ Meets all targets
- Models come standard with:
 - Restroom
 - HVAC
 - Generator
- Toy hauler models have a ramp for easy loading
- Low deployment cost
- No regular automobile maintenance
 - Tow vehicle rental

CONS:

- ➤ Higher initial cost
- Separate tow vehicle required

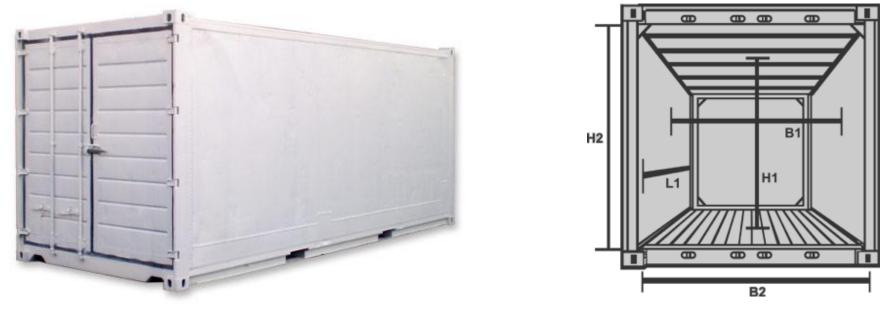
Concept 3 - Enclosed Trailer

Cost: \$1,200 - \$30,000

Concept	Interior temp	Restroom	1-3 operators	Storage of racks up to 6'	Overall cost of \$150,000	Deployment cost of \$2,500
Enclosed Trailer	(mod)	(mod)	Х	Х	Х	Х

Concept 3 - Enclosed Trailer

PROS:


- ➤ Can meet all targets
 - Needs modifications
- Comes standard with a loading ramp
- Some models have HVAC
- Easily customizable option
- Inexpensive to purchase standard model
- > Low deployment cost
- No regular automobile maintenance

CONS:

- > A tow vehicle is required
- Requires more labor costs to meet all targets

Concept 4 - Shipping Container

Cost: \$3,000 - \$7,000

Concept	Interior temp	Restroom	1-3 operators 6'		Overall cost of \$150,000	Deployment cost of \$2,500
Shipping Container	(mod)	(mod)	Х	Х	Х	Х

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

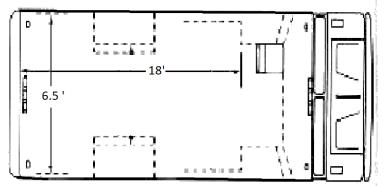
Concept 4 - Shipping Container

PROS:

- ➤ Can meet all targets
 - Needs modifications
- Easily customizable option
- Inexpensive before modifications
- There are companies that specialize in shipping container mods

CONS:

FAMU-FSU COLLEGE OF ENGINEERING


IECHANICAL ENGINEERING

- An expensive transport vehicle is required
- Requires more labor costs to meet all targets
- > Limited sizing options

Concept 5 - Step Van

Cost: \$50,000 - \$70,000

Concept	Interior temp	Restroom	1-3 operators	Storage of racks up to 6'	Overall cost of \$150,000	Deployment cost of \$2,500
Step Van	(mod)	(mod)	Х	Х	Х	Х

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Concept 5 - Step Van

PROS:

- ➤ Can meet all targets
 - Needs modifications
- Some models have HVAC
- Easily customizable option
- > All inclusive
 - Self Propelled

CONS:

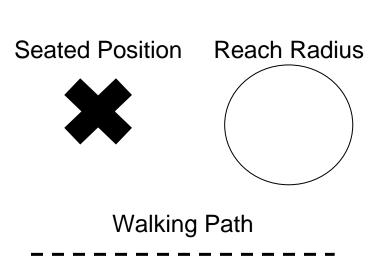
- Requires more labor costs to meet all targets
- Regular automotive maintenance and repairs
- Limited seating while in transit

Raine Sagramsingh

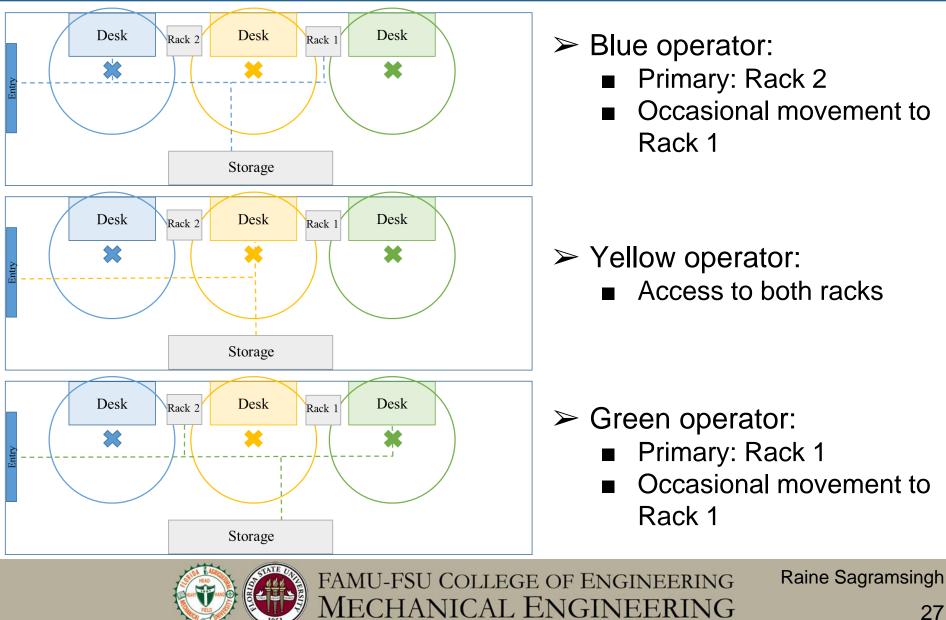
Interior Floor Plan Concepts

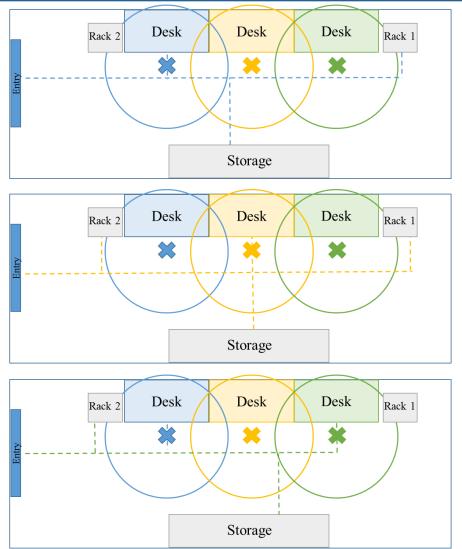
FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

- Designed for 3 operators with 2 racks of equipment
 - 1. Blue Operator

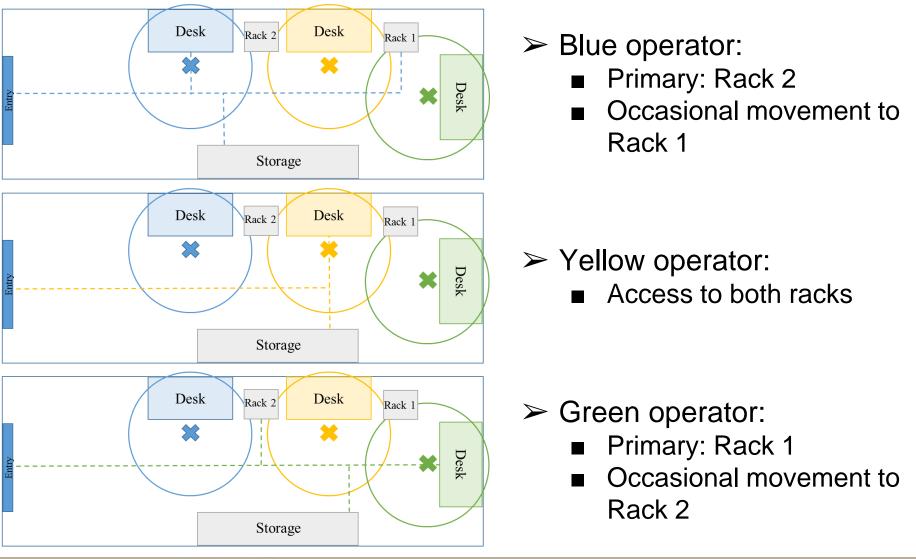


2. Yellow Operator




3. Green Operator

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING



- ➤ Blue operator:
 - Primary: Rack 2
 - Occasional movement to Rack 1
- > Yellow operator:
 - Frequent movement to Rack
 1
 - Occasional movement to Rack 2
- ➤ Green operator:
 - Primary: Rack 1
 - Occasional movement to Rack
 2

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Next Steps

➤Vehicle Selection

- Interior will be fully designed after vehicle selection, taking into consideration:
 - Ergonomics
 - Efficiency
 - Weight distribution
 - Sponsor preference
 - ➢Project Plan
 - ≻Website

Questions?

References

- Dieter, G. E., & Schmidt, L. C. (2012). Engineering Design. New York: McGraw-Hill Higher Education.
- > Air Force Research Lab. (n.d.). Retrieved from https://teamafrl.afciviliancareers.com/
- kitchens.com. (n.d.). The Work Triangle. Retrieved from http://www.kitchens.com/design/layouts/the-work-triangle/the-work-triangle
- Keyserling, W., Punnett, L., & Fine, L.J. (n.d.) Ergonomic Interventions to Prevent Musculoskeletal Injuries in Industry. Lewis Publishers.
- Fleetwood RV. (n.d.) Flair. Retrieved November 01, 2017, from http://www.fleetwoodrv.com/2018-fleetwood-flair
- DiamondCargo.com (n.d.) Retrieved November 01, 2017, from https://diamondcargo.com/
- Pro-Line Trailers. (n.d.) Enclosed Trailers & Cargo Trailers. Retrieved November 01, 2017, from https://www.prolinetrailersales.com/enclosed-trailers
- Aztec Container. (n.d.) 40 Foot Storage and Shipping Containers with Cargo Doors. Retrieved November 01, 2017, from https://www.azteccontainer.com/storage-container-40ft-cargo-door.html
- Shayne Oswald Shipping Consultants. (n.d.) Container Specifications. Retrieved November 01,2017, from http://www.sosconsultants.com.au/container-specifications
- Expandable/Hybrid Campers, Travel Trailers & RVs. (n.d.) Retrieved November 01, 2017, from https://starcraftrv.com/styles/expandable-hybrid/
- The Lunch Truck Biz. (2013, February 10). Retrieved November 01, 2017, from https://www.pinterest.com/pin/230809549624927720/
- Chevrolet stepvan pictures & photos, information of modification (video) to Chevrolet stepvan on Details-of-cars.com. (2015, March 21). Retrieved November 01, 2017, from http://details-of-cars.com/chevrolet-stepvan/
- Parts that fit Morgan Olson Step Vans. (n.d.). Retrieved November 01, 2017, from http://www.stepvanparts.com/morgan_olson_stepvan.htm

Back-Up Slides

Acronyms

GPS	Global Positioning System			
ME	Mechanical Engineering			
ECE	Electrical/Computer Engineering			
AFRL	Air Force Research Lab			
AGT	Advanced GPS Technologies			
HVAC	Heating, Ventilation and Air Conditioning			
PNT	position, navigation, and timing			

PNT Equipment

- ➤High power amplifiers
- ➤On-orbit Reprogrammable Digital Waveform Generators (ORDWG)
- ≻New antenna concepts
- ➤Supporting electronics
- >Algorithms and new signal combining methods
- Satellite bus technologies for increased resiliency and lower Size, Weight, and Power (SWaP)
- >Advanced cyber technology

Kitchen Work Triangle

- > Defined by the National Kitchen and Bath Association:
 - An imaginary straight line drawn from the center of the sink, to the center of the cooktop, to the center of the refrigerator.
- ➤ Main goal: efficiency
 - keeps major work stations near the cook
 - minimizes traffic within kitchen
 - prevents kitchen from being cramped

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Vehicle Concepts

Concept	Interior temp	Restroom	1-3 operators	Storage of racks up to 6'	Overall cost of \$150,000	Deployme nt cost of \$2,500
Motor Home						
Camper Trailer						
Enclosed Trailer						
Shipping Container						
Step Van						

Legend:

- $\hfill\square$ Can meet target with modification
- $\hfill\square$ Meets target when purchased

FAMU-FSU COLLEGE OF ENGINEERING MECHANICAL ENGINEERING

Vehicle Concepts

- Some vehicle options do not meet all of the targets at the time of initial purchase, but all vehicles have ability to be modified to meet targets.
- When completing analysis to select vehicle, the team will consider:
 - vehicle cost
 - modification time and cost
 - labor time and cost

Reach Radius

- > Term used in ergonomics
- > Definition:

reach radius = upper arm + forearm + hand ➤ For horizontal reach, the 5th percentile female (151.1 cm) is used

