

Design Review 5 Formula 1/10 Autonomous Vehicle

Team 303 Members:

Cody Vanderpool, Michael Calisi, Derek Swenson, Steven Roy, Nicholas Stiles

Meet The Team

Cody Vanderpool PROJECT MANAGER

Steven Roy MECHANICAL ENGINEER

Derek Swenson SOFTWARE ENGINEER

Nicholas Stiles SOFTWARE ENGINEER

Michael Calisi ELECTRICAL ENGINEER

FAMU-FSU Vanue College of Engineering

Vanderpool

2

Project Overview

The Competition

The Formula 1/10 competition gives students an opportunity to learn about perception, planning and control for autonomous vehicles [1].

Fig. 1: An autonomous 1/10th scale vehicle. [1]

 Teams from around the globe build vehicles and design algorithms for autonomy before racing one another.
 Robot Operating System (ROS) is commonly used to implement autonomous navigation.

Project Summary

Design and build a 1/10th scale car that can analyze its surroundings and navigate around obstacles autonomously.

≻Requirements:

- Avoid walls and other obstacles without human input.
- Make decisions in real time.
- Operate at a safe and controlled speed.
- Ability to switch between autonomy and remote control.
- Adhere to the rules and guidelines of the F1/10 Autonomous Racing Competition Rulebook.
- Theme based on Mel Brook's 1987 cult classic *Spaceballs*.

Stakeholders

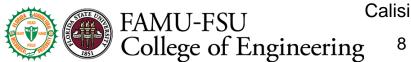
≻ Sponsor:

Dr. Jerris Hooker

≻ Advisor:

- Dr. Shayne McConomy
- The Formula 1/10 Autonomous Racing
 - Competition
- ➤ FAMU-FSU College of Engineering

Recap: Fall Semester


- Vehicle will run using the NVIDIA Jetson TX2 which will operate using Robot Operating System (ROS).
- Selected a combination of a LIDAR and a ZED stereoscopic camera to collect both a 360° 2D slice of wall distances and a 3D mesh of environment in front of vehicle.
- Selected all necessary parts and a configuration that abides by competition rules.
- Began learning ROS as well as testing on the ZED camera and collecting data.

Physical Build of the Vehicle

Vehicle Build

- Stripped down Traxxas
 1/10th scale Ford Fiesta
 Rally Car chassis.
- Mounting brackets and platforms 3D printed in PLA.
- All components and sensors mounted with hex standoffs using pre-existing holes.

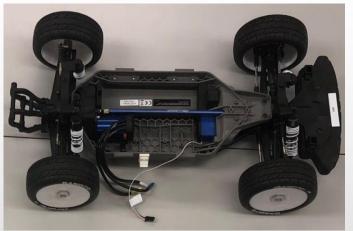


Fig. 2: Traxxas RC Rally Car chassis.

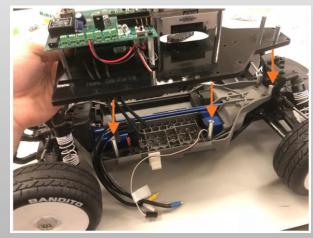


Fig. 3: Mounting of Jetson and Powerboard.

Calisi

Powerboard Assembly

Board Specifications:

- 1. 110mm x 77.30mm 1.6mm thick
- 1. Weight: 3.2 ounces
- 2. 48 total

components

- 3. Input:11.2v
- 4. Output: 3v, 6v , 8v

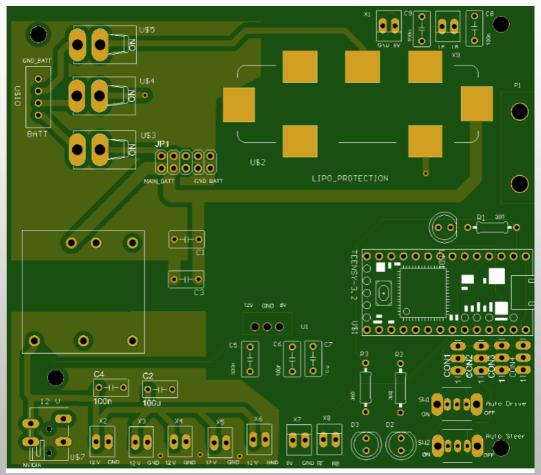


Fig. 4: Power board model

Calisi

10

Main Components

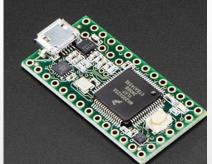


Fig. 6: Teensy 3.2 Fig. 7: 12V DC transformer

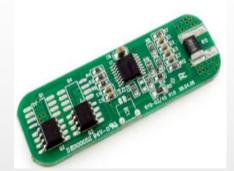


Fig. 8: LiPO protector

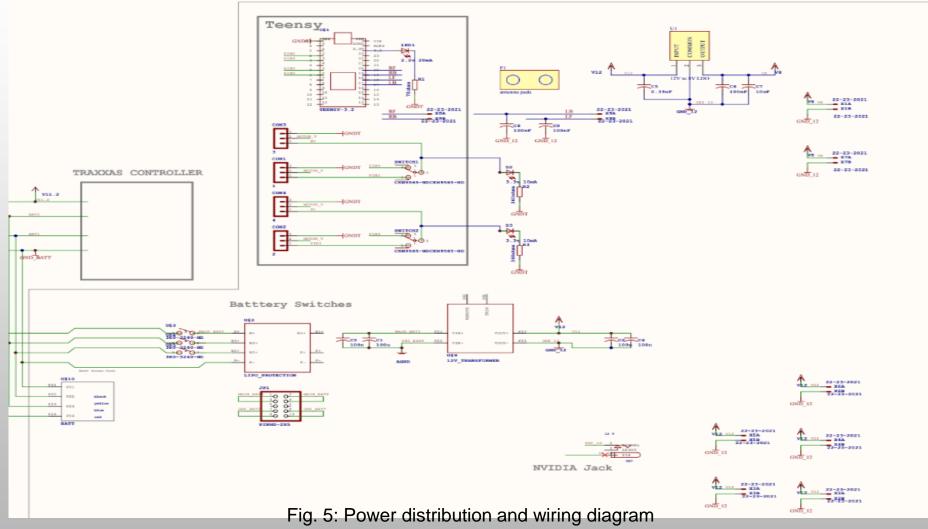
Fig. 9: Breakout Board

- Teensy 3.2-Shield: Jetson Speed Controller Servo communication.
- <u>12v DC.v.DC transformer</u>: Steps down power from 11.2v to 8v for Teensy 3.2 and IMU.
- 3s LiPO protection circuit: Kills power before voltage depletion point and prohibits current fluctuations to processing components.
- Sparkfun Breakout board: converts the 6 pin header to usb for the communication between the Jetson tx2 and the IMU.

Fig. 10: 11.2V LiPO battery

College of Engineering

FAMU-FSU


Calisi

11

HBR 11.2v LiPo battery: provides all power

Powerboard Assembly

Department of Electrical and Computer Engineering

Controls Overview

Autonomous Control Considerations

slip

- A human driver makes decisions based on sensed vehicle-road interactions such as:
 - velocityposition
 - acceleration vibrations
 - forcesroll
 - noise
 - obstacles

- Simplified Model Considers:
 - Distance and Direction to objects

F/O

- Position, Velocity, and Acceleration
- ➤ Controllable Variables:
 - Steering angle (δ)
 - Motor speed (ω)

Vanderpool

How Do We Maintain Trajectory?

- Algorithm uses LIDAR
 data to maintain
 equidistance from walls
- Camera will give
 distance to objects
 ahead
- Slow down when a turn is detected and accelerate after turn

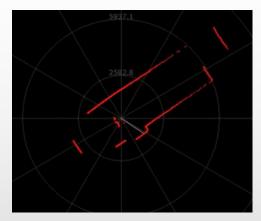


Fig. 11: LIDAR creates a 2D map of surrounding surfaces.

Fig. 12: ZED Stereoscopic camera maps distance in grayscale.

College of Engineering

FAMU-FSU

Vanderpool

PID Controller Objectives

- Keep vehicle driving along centerline of track
- Manage steering attack response times
- Modulate speed to be
 fast on straightaways and
 slow down coming into
 turns

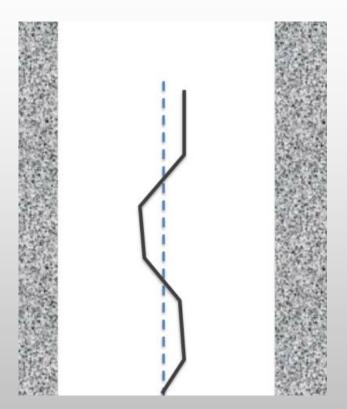


Fig. 13: The goal is to drive the error in lateral distance from the centerline to zero. [1]

FAMU-FSU Vande College of Engineering

Vanderpool

PID Controller

➤ Two separate models

- 'Driver' model controls error in trajectory
- 'Bicycle' model simulates vehicle physics

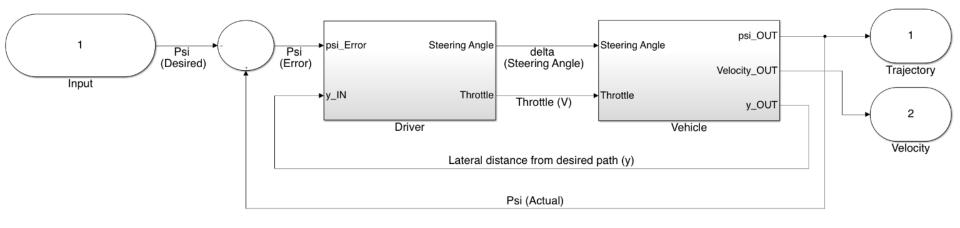
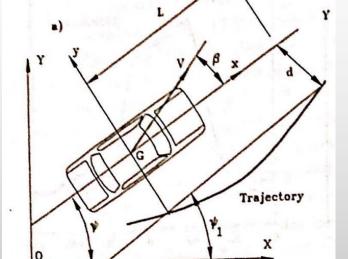


Fig. 14: Simulink model of PID controller.

Department of Electrical and Computer Engineering

FAMU-FSU

College of Engineering


Vanderpool

Genta Driver Model

- \succ A simple driver model that incorporates predictive behavior.
- \succ Variables:
 - τ Time delay
 - δ Steering angle
 - $\dot{\delta}$ Steering angle rate of change
 - Kd Gain
 - Ψ Actual yaw angle
 - Ψ_1 Desired yaw angle
 - y Lateral distance from desired

trajectory

- Preview distance

F//0

Fig. 15: Genta Driver Model. [2]

 $\tau \dot{\delta}(t) + \delta(t) = -K_d[\varphi(t) - \varphi_1(t) + \frac{y(t)}{I}]$

Vanderpool

18

Bicycle Vehicle Model

- \succ Simplifies vehicle kinematics to one wheel per axle
- Comprised of linearized equations of motion
 - $\sum F_y$, $\sum F_x$, $\sum M_z$
- \succ Transform into two unknowns:
 - Yaw rate
 - Sideslip angle (lateral vel.)
- \succ Variables of note:
 - v velocity β - sideslip angle δ - steering angle ψ - yaw angle

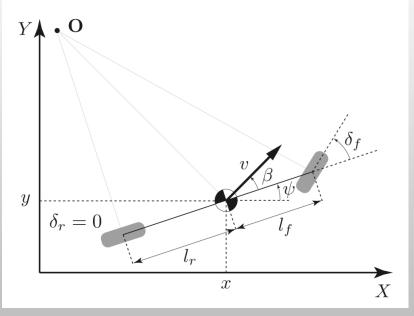


Fig. 16: Bicycle Vehicle Model. [3]

Vanderpool

19

Data and Mapping Overview

Data Collection

- ZED cameras point cloud data
 will be used in order to create
 an accurate depth map of the
 environment
- IMU will control localization
 while the RPLIDAR will keep
 track of distances out of ZED
 camera frame
- Will use the rviz ROS library in order to visualize created map

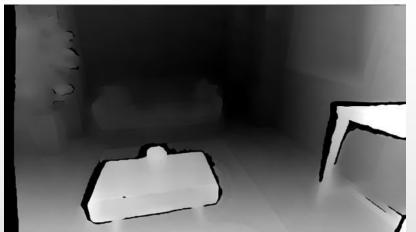


Fig. 17: ZED point cloud data.

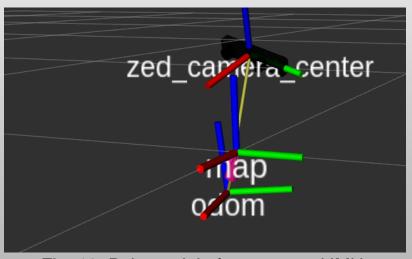


Fig. 18: Rviz model of camera and IMU.

FAMU-FSU College of Engineering

Stiles

Localization

- Mapping of the environment
 will be generated using the
 Hector SLAM library, which
 utilizes ROS bag files
- Since Hector SLAM is computer intensive, real time localization will use MIT Particle Filter Localization
- Updates at a rate of 30Hz and utilizes GPU, whereas other options only use CPU

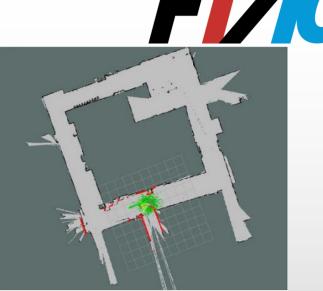
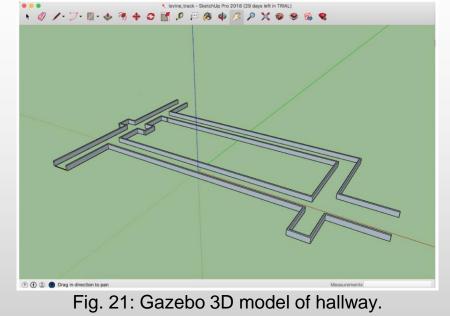


Fig. 19: Hector SLAM generated map.

Fig. 20: Particle Filter Localization.

Stiles


22

Simulation

- Test algorithms in a controlled environment before we bring it into the real world so that we minimize risk of crashing.
- ROS 'Gazebo' simulator software
- Loads a world as a .DAE file and loads the car. It has a physics engine that can determine when the car crashes into a wall.

Looking Forward

Budget Update

Part Name	Price
Traxxas 1/10 Scale AWD Ford Fiesta ST Rally Race Car	\$285.00
RPLIDAR A2M8 Laser Range Scanner	\$319.95
Mamba Max Pro + 4600kv 1/10 Motor	\$99.00
SparkFun (PID 14001) 9DoF Razor IMU M0	\$54.95
Orbitty Carrier board for TX2	\$174.00
Flipsky VESC 4.12	\$85.00
Logitech Gamepad F710	\$39.00
Sabrent 4-port USB 3.0 Hub x2	\$19.98
Nuts, Bolts, and Standoffs	\$76.00
Powerboard Components	\$101.94
Total:	\$1,254.82
Alloted Budget:	\$2,000.00

Progress Update

- Vehicle Assembly: 80% Complete
- ➤ Main Concerns:
 - Construction, Implementation and Fine Tuning of the Driver and Vehicle models is a difficult task.
 - Translating data from sensors to necessary variable inputs for control system.
 - Implementation of travel between offices will leave little time for testing

Next Steps

- Mount powerboard and connect all components
- ➤ Calibrate VESC PID gains
- Map gamepad controls to motor outputs
- Integrate OpenCV in order to path-find
- Run simulations using Gazebo collecting data in order to determine best algorithm
- Begin testing in real environment
- Implement speed controller once path-finder has been refined

References

[1] 'About F1/10'. [Online]. Available: <u>http://f1tenth.org/about</u> [Accessed: 12- December- 2018].

[2] G. Genta, Motor Vehicle Dynamics: Modeling and Simulation. Danvers, MA: World Scientific Publishing Co. Pte. Ltd., 1997, p. 205-324.

[3] J. Kong, M. Pfieffer, G. Schildbach, F. Borrelli, 'Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design'. [Online]. Available: <u>https://borrelli.me.berkeley.edu/pdfpub/IV_KinematicMPC_jason.pdf</u> [Accessed: 10- February- 2019].

Questions?

