Design Review 6 Emergency Management Drone Team 307

Team Introduction

Haley Barrett Project Manager

Josh Reid Design/Aerodynamic Engineer

Matthew Roberts ECE Lead

Juan Patino Test Engineer

Kody Koch ME Lead

Francisco Silva Programmer

Joshua Reid

2

Joshua Reid

FAMU-FSU

Engineering

3

Sponsor

Florida State University

Emergency Management and Homeland Security Program

David Merrick, Director

Project Background

- Purpose •
 - \succ Design a drone capable of assisting search and rescue teams in finding targets.
- Requirements ٠
 - \succ Range of at least 1km with an ideal range of 2km
 - \succ Flight time greater than 20 minutes
 - > Stabilization of the camera
 - > Object detection
 - An algorithm that detects targets on the ground.
 - \succ Weight constraint of 2kg.

Joshua Reid

Final Changes to Design

- Motor power converter has been removed.
 - One converter results in a simpler design, easier installation, cheaper components.
- One 8000mAh battery will be installed instead of two.
 - \succ This reduced weight by 355g.
- Neural network replaced the color filtering algorithm for object detection.
 - \succ The neural network identified obscured targets better than color filtering.
- Telemetry radio range was extended with RFD900s
 - \succ Telemetry range is increased up to 15km.
- TI CC1310 Transceiver was replaced with a RFM95 LoRa module.
 - \succ Lora modules are easier to interface with the PI and provide more output power.
- Wing airfoils were changed to MH60 for the tip and HS522 for the root.
 - \succ These airfoils offered better structural stability and were significantly easier to cut

RFM95 Lora module

Joshua Reid

Accomplished

- The power converter has been assembled.
 - > Testing produced results of 80% efficiency.
 - > Operated underneath optimal load current.
- New communication system was programmed.
 - > Images were received in close range testing.
- First iteration of the neural network has been trained.
- Construction of the body has been completed.

Kody Koch

Mechanical Design

- The wings of the drone have been constructed.
 - New airfoil shapes were used to provide more structural integrity.
 - Final drone will have to fly at a high angle of attack to generate efficient lift.

Swept Wings

ANAGE

- Airfoil templates were laser cut on 6mm thick plywood.
- The hot wire cutter followed airfoil templates to create the desired shape.
- Wings were reinforced with packaging tape to reduce skin friction.

Kody Koch

Final Frame

- The body of the drone was also cut, with a 12"x12"x2" body with a tapered front.
- Body will be taped and fitted to the wings after electronics are placed inside the drone.
- The center of gravity can be adjusted with clay, if needed.

Drone Fuselage

Drone Fuselage With Wings

Kody Koch

Communications

- Changed the TI CC1310 Transceiver for the RFM95 LoRa module.
 - The new transceiver provides 100mW transmit power, better compatibility with the Pi, and simpler range testing.
 - > It has four times more transmit power than CC1310.
- Two Adafruit RFM95W LoRa Radio transceivers were bought to prototype and design the communication process.
 - RFM95W was replaced for a custom designed PCB using the module.
- Transmitting images with less chance for error is of priority.

Matthew Roberts

Department of Electrical and Computer Engineering

Image Processing

- Neural network was trained using a python script based on PYTorch.
 - The training is to be continued with different parameters and a larger database.
- Confidence How precise the results are
- Loss Inconsistency between
 predicted and actual label
- Recall Proportion of positive identified correctly
- mAP (Mean average precision)

Budget Update

FS

Budget Sector	Price Total (\$)	EMERGENCY MANAGEMENT
Total Budget	1500	_
Sum of Parts Ordered	1,001.32	
Sum of Remaining Parts	0.00	
Total Sum of Parts	1,001.32	
Budget Remaining	498.68	

Juan Patino

Timeline

- Current Progress
 - Phase two of range testing is in progress.
 - The second iteration of the neural network is being trained.
- Future work
 - The construction and final testing of the prototype needs to be completed.

Juan Patino

Department of Electrical and Computer Engineering

