Final Presentation Emergency Management Drone Team 307

Team Introduction

Haley Barrett Project Manager

Josh Reid Design/Aerodynamic Engineer

Matthew Roberts ECE Lead

Juan Patino Test Engineer

Kody Koch ME Lead

Francisco Silva Programmer

Haley Barrett

Department of Electrical and Computer Engineering

EMERGENCY

MANAGEMENT

& HOMELAND SECURITY PROGRAM

Florida State University

David Merrick, Director

Emergency Management and Homeland Security Program

3

Haley Barrett

Project Background

- Purpose \bullet
 - \succ Design a drone capable of assisting search and rescue teams in finding targets.
- Requirements
 - \succ The range needs to be at least 1 km, with an ideal range of 2 km.
 - \succ The flight time should be greater than 20 minutes.
 - \succ The camera needs to be stable at all times.
 - > Object detection
 - There should be an algorithm that detects targets on the ground.
 - \succ There is a weight constraint of 2 kg.

Haley Barrett

Mechanical Concept Generation

Mechanical Components	Options						
Vehicle Type	Multi-Rotor	Fixed Wing					
# of Motors	1	2	3	4	5	6	8
Motor Configuration	Quad Rotor "+" Configuration	Quad Rotor "X" Configuration	Y-6 Rotor	X-8 Rotor	Wings	Nose and Wings	Rear
Frame Material	Carbon Fiber	Foam	PLA Filament	Epoxy Fiberglass	Aluminum	PVC	
Airfoil	NACA 0012	NACA 1408	20-32C Airfoil	NACA 62(2)-615			
Fuselage	Blunt Body	Bluff Body	Narrow Body	Flying Wing			
Landing	Parachute	Belly Land - No Gear	Landing Gear				

Haley Barrett

Mechanical Concept Selection

Mechanical Components	Options					
Vehicle Type		Fixed Wing				
Motor Configuration						Rear
Frame Material		Foam				
Airfoil			20-32C Airfoil			
Fuselage				Flying Wing		
Landing		Belly Land - No Gear				

Haley Barrett

Electrical Concept Generation

Electrical Components	Options					
Battery	Single 3-Cell	Single 4-Cell	Single 6-Cell	Multiple 3-Cell	Multiple 4- Cell	Multiple 6-Cell
Power Management	Self-Made Power Converter	Multiple OTS Switching Mode Converters	Design around Power Controller - 1 Converter	Design around Power Controller - Multiple Converters		
Communication System	802.11 - WiFi	802.15.4 - Low Rate WPAN	LTE-Advanced - Cellular Connection			
Image Processor	NVIDIA TX1	Raspberry Pi 3B+	Raspberry Pi 2	Raspberry Pi 3B		
Capture Device	Thermal Camera	Infrared Camera	Webcam	Go-Pro	FPV	

Haley Barrett

Electrical Concept Selection

Electrical Components	Options				
Battery	Single 3-Cell				
Power Management	Self-Made Power Converter				
Communication System		802.15.4 - Low Rate WPAN			
Image Processor		Raspberry Pi 3B+			
Capture Device			Webcam - Logitech C920 HD PRO		

Haley Barrett

Concept Selection

Component	Selection
Vehicle Choice	Flying Wing
Motor Configuration	Rear
Airfoil	20-32C
Material	Foam
Power Management Systems	Buck Topology
Communications	TI CC1312R MCU
Processor	Raspberry Pi 3 B+
Battery Type/Number of Batteries	1 3s Battery
Camera	Logitech C920 HD PRO

Haley Barrett

Block Diagram of Components

10

Haley Barrett

Power Management

- The power converter being used has a 93.7% efficiency and is rated for 5V/8A.
- A 8000mAh/11.1V LiPo battery is being used for the power source.
- Flight time calculations
 - Total power consumption: 153.08W (80% throttle).
 - Battery optimal capacity: 6400mAh
 - Total flight time at : ~40 minutes
 - Total flight time at max power: ~30 minutes
- The image shown is the view from the top side of the power converter.

....

....

PCB of Power Converter

Min Clearance: 10mill

Communication System

- The LoRa (Low data rate, long Range) communication module sends stored images to the ground station.
 - The transceivers provides 100 mW of transmit power and better compatibility with the Raspberry Pi.
- Two Adafruit RFM95W LoRa Radio transceivers were bought to prototype and design the communication process.
- Sending data at a lower data rate yields a lower chance of error while keeping the same range.

RFM95W Transceiver

Matthew Roberts

Department of Electrical and Computer Engineering

Object Detection

- **Neural Network**
 - The model selected for our objected detection Ο was the Yolov3.
 - This model is easy to train and has a high Ο mAP (mean Average Precision).

- Training Results
 - To train the neural network a diverse dataset is Ο required.
 - Current model was trained once with failed Ο expectations.

13

Images Received

Object Detection Cont.

	Positive	Negative
Number of Images	TBD	TBD
Percentage (%)	TBD	TBD

- The number of images in the dataset will be distributed in the following manner:
 - Training: 60% Ο
 - Validation: 25% 0
 - Testing: 15% Ο
- Training the neural network will take around 200 epochs, or around 3 days.

Flight Control

- Spektrum DSM receiver
- Telemetry (radio telemetry)
- Telemetry (on-screen display)
- USB
- SPI (serial peripheral interface) bus
- Power module
- Safety switch button
- Buzzer
- 9 Serial
- 10 GPS module
- CAN (controller area network) bus
- 12 I²C splitter or compass module
- 13 Analog to digital converter 6.6 V
- 14 Analog to digital converter 3.3 V
- 15 LED indicator

- The Pixhawk autopilot runs on the PX4 open source software.
- It takes GPS and command signals from the receiver.
- The autopilot control can be managed through the ground station's installed software.
- RFD900 modems will be used to communicate with the drone through the QGroundControl software at long distances.

mRo Pixhawk with corresponding legend

FAMU-FSU Engineering

Kody Koch

Airframe - Wings

- Airfoil templates laser cut from 6 mm plywood.
 - Root chord: HS522.
 - Tip chord: MH60.
- Wings were cut using hot wire foam cutter.
- They were taped over with packing tape to reduce skin friction and reduce flexing.
- Wings were attached to the fuselage via wooden dowels and hot glue.

Kody Koch

Department of Electrical and Computer Engineering

Airframe - Lift and Drag Estimates

• On the lift map, 0 net lift represents the velocity and angle of attack where the drone flies at steady speed (trim condition).

Angle of Attack α (°)

• On the drag map, 0 net drag represents the velocity and angle of attack where the drone flies at its maximum speed.

Kody Koch

Airframe – Flight Estimates

• This regime map represents how the drone will operate at a given velocity and angle of attack.

 This graph show how the survey area scales with altitude. In this case, with an angle of attack of 0°.

Kody Koch

Airframe - Control Surfaces

- Flight control systems are controlled by a device called an elevon.
 - The elevons are given commands via the Pixhawk.
 - Elevons act as both an elevator and aileron, controlling pitch and roll respectively.
 - Servo motors are used to move the elevons via a thin linkage rod.
- No rudder is needed as the drone uses a pusher propeller in order to supply thrust.
 - Flying wings typically do not have rudders.

Joshua Reid

Airframe - Fuselage

• The fuselage was shaped using two rectangular blocks of foam that were hot glued together.

- The front curve was shaped by using a separate laser cut template.
- The interior cavity was initially removed using a modified hot wire wand to cut at a constant depth.
 - Individual blocks were then removed by hand to create the cavity.
- A plywood box was later added for structural support.

Joshua Reid

Airframe - Assembled Structure

Constructed airframe with motor and propeller attached

Joshua Reid

Vehicle Specifications

Component	Total Weight (g)
Pixhawk/Accessories	38
Battery	493
Processor Buck Controller	10
Omnidirectional Antenna	28
Main Processor	50
Neural network stick	18
720p Webcam	162
Telemetry Modem RFD900	14.5
Motors/Propellor	68
Airframe	TBD
Connectors/Accessories	TBD

- Vehicle weight totals TBD g (TBD kg) which is under the target weight.
- The lateral length of the drone measures 48 inches.
- The box encasing the electronics measures 8 inches in width and 13 inches in length.

Joshua Reid

Department of Electrical and Computer Engineering

Performance

• (This will consist of the final test results)

Juan Patino

23

Department of Electrical and Computer Engineering

Lessons

- design should Initial work have taken • manufacturing and transportation constraints into further consideration.
 - The initial design called for high lift avian wings Ο which were cut too thin by hot wire cutter.
 - They were exchanged for a more conventional Ο airfoil with less lift.
 - The initial design called for a 84" wingspan Ο which would have been difficult to transport.
 - The final design consists of a 48" wingspan Ο which will be significantly easier to transport.

Lessons Cont.

- The communication schema had to be redesigned multiple times due to technical limitations and poor planning.
 - The initial components often underperformed or simply did not work in multiple cases.
 - Technical manuals for components should have been read thoroughly in order to use each component correctly.
 - An example is the case of the yagi antenna which was initially tested in the wrong orientation.

Old Communication System (TI CC1310)

Department of Electrical and Computer Engineering

