

Team Members

Jacob Emerson

Mechanical Engineer

Oscar Flores

Computer Engineer & Electrical Engineer

John Williams

Electrical Engineer

Bishoy Morkos

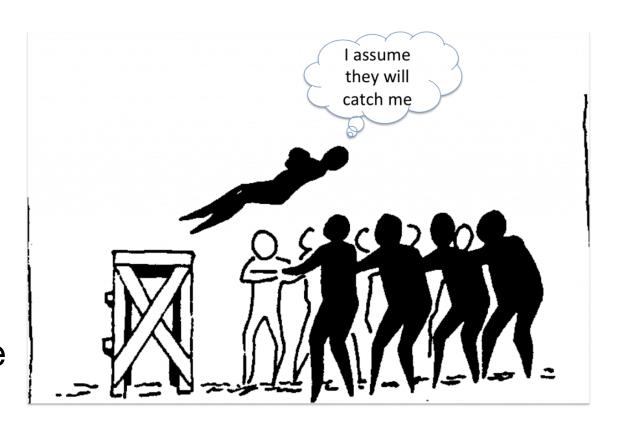
Mechanical Engineer

Oscar Flores

Department of Electrical and Computer Engineering

Department of Mechanical Engineering

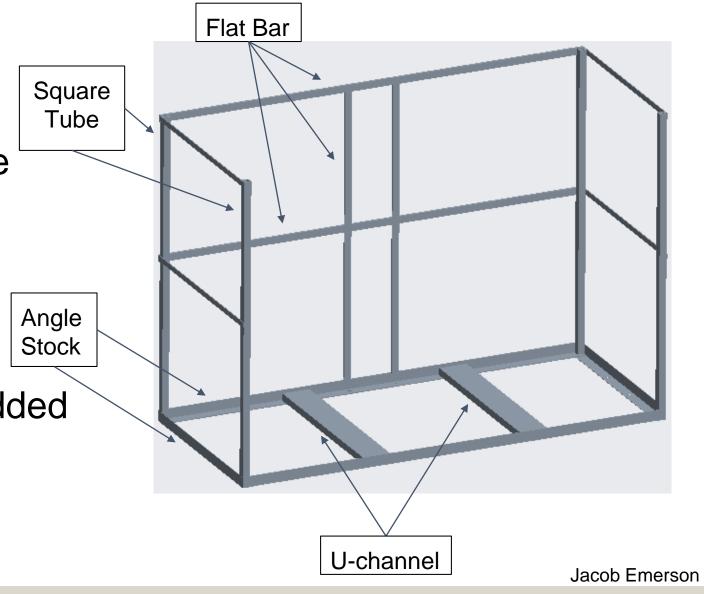
Customer Needs & Requirements


- Minimize the effort of taking out the trash
- Traverse a 5 degree incline
- Hold the waste bins securely
- Easy access to waste containers
- Weatherproof
- Impact proof

Oscar Flores

Assumptions

- Largest gradient that will be traversed is 5 degrees of incline (ADA)
- South Florida Weather: rain, humidity, and wind
- RTC will be stored outside on the side of the house
- Pathway is paved
- Waste Engineers will return the bins to the RTC


Oscar Flores

Frame

Rectangular aluminum frame

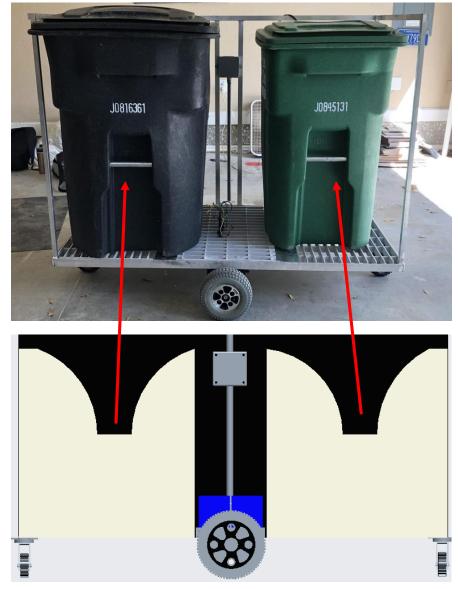
- Lightweight
- Anti-corrosive
- High strength
- Weatherproof

Aluminum U-channel was added for extra support.

Floor Grating

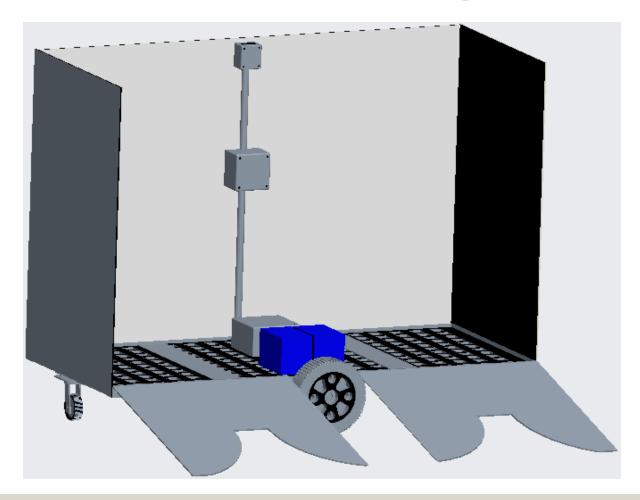
The base floor of the RTC was chosen to be a Light gray Rigidex Moltruded grating based on:

- High strength to weight ratio
- Corrosion resistant
- Lightweight
- Permeable Design



Jacob Emerson

Features & Safety


- Gate and ramp allow easy access to waste bins
 - V-shape pattern design for automatic garbage disposal
- Aluminum flat bar will surround the RTC to secure the bins from possible tipping

Jacob Emerson

Robotic Trash Cart

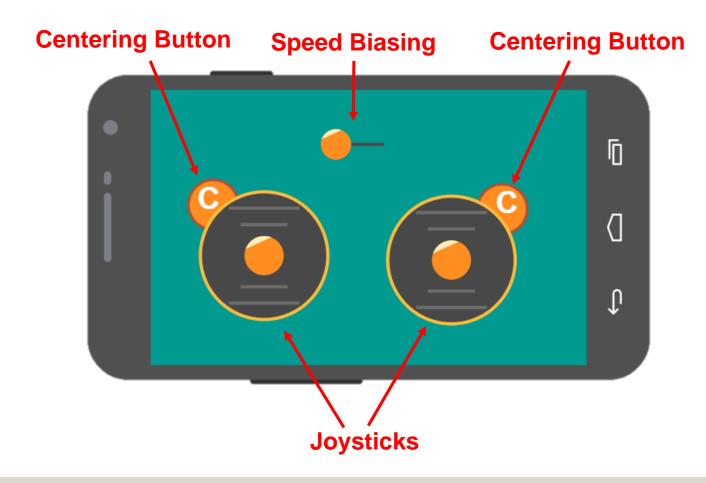
- Aluminum frame
- Impact resistant
- Fiberglass grated base
- Mid-wheel drive
- Zero-point turning

Jacob Emerson

Control System

- > PWM
- > Dual channel

ESP32 SOC


- > Arduino compatible
- > BLE & WiFi capabilities

RemoteXY App

- > Bluetooth capabilities
- Minimizes effort to dispense waste bins

Oscar Flores

Mobile Application

- Free application for smartphones
- iOS & Android supported
- Arduino compatible
- Portable

Oscar Flores

Drive System

CIM 24 V DC motors and controller

 Provides the torque needed to get up a 5 degree incline with 200 lb load

Two 12 V (SLA) batteries

- 35 Ah
- Deep cycle

John Williams

Drive System Testing

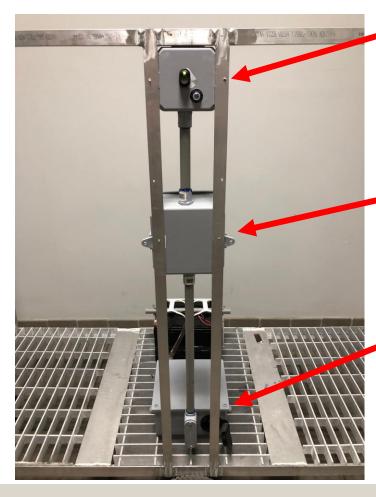
Local push button operation

 Each motor functions in forward and reverse

No load test

Current is nominal at 2.79 amps

Local voltmeter

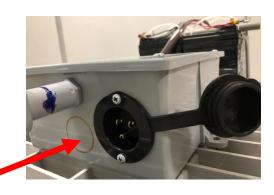

Fully charged 25.4 V

John Williams

Control and Drive System

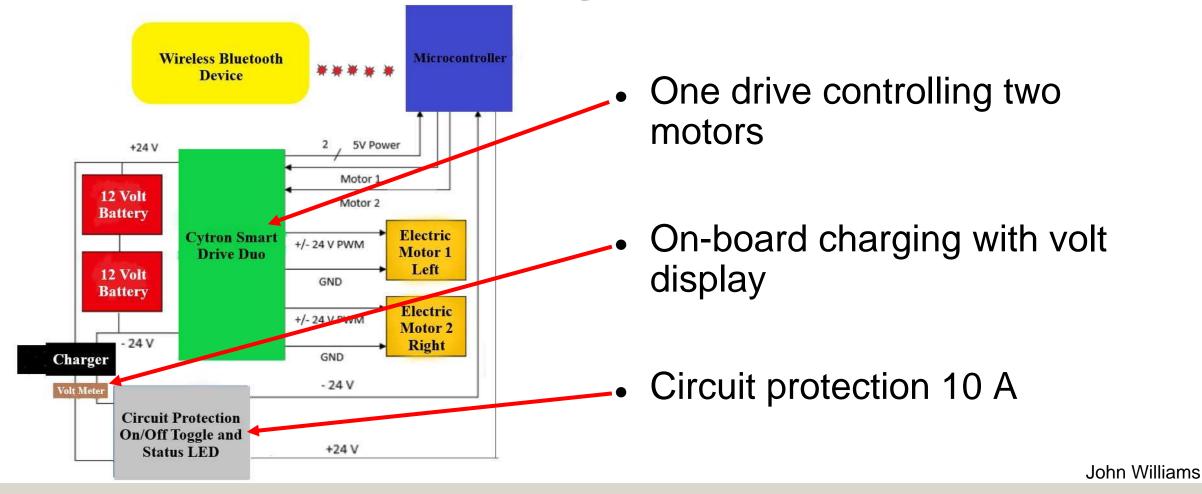
Junction Box 1

- Toggle switch
- Circuit breaker
- Fuel gauge display

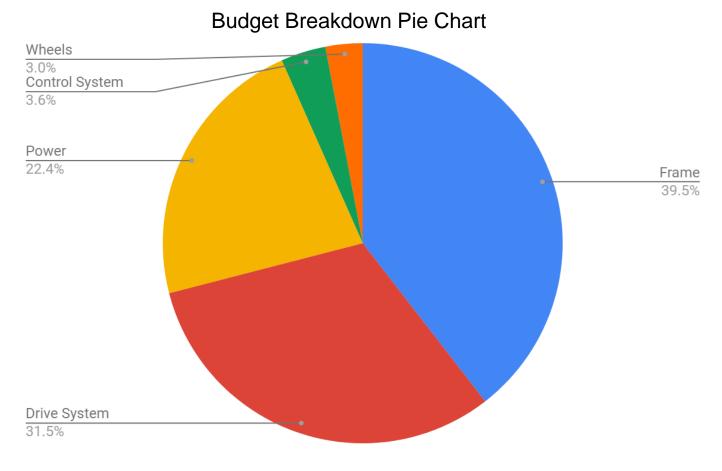

Junction Box 2

- Cytron SmartDriveDuo
- ESP32 SOC

Junction Box 3


- Motor connections
- Battery connections
- On-board charging

John Williams


Control and Drive System

Budget Update

Total Budget - \$1,900.00

- Motors, controller, drive wheels
 \$529.00
- Aluminum \$163.00
- Fiberglass grating \$201.00
- 12V SLA battery (2) \$130.00
- Cytron & ESP-32 \$70.78
- Miscellaneous \$332.18

Total Spent = \$1,579.49 Remaining = \$320.51

Bishoy Morkos

Current Work

- Complete gate integration and any stabilization needs
- Complete wireless controller interface and testing
- Engineering Shark Tank

Bishoy Morkos

Special Thanks

Dean's Office of the CoE

Dr. Christopher Edrington

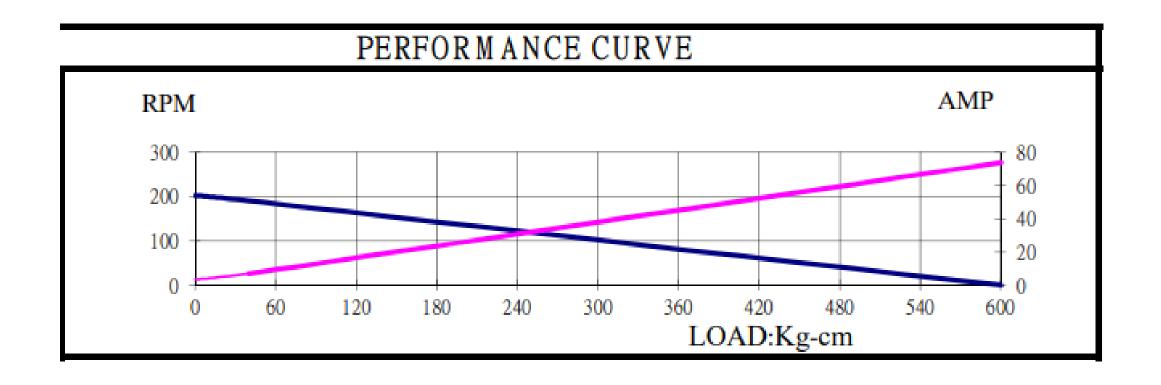
Dr. Michael Devine

Dr. Jerris Hooker

Bishoy Morkos

Current Progress

John & Oscar


Torque Calculation

```
200lbs = 90.7 kg

torque = radius*force*cos(theta) = 0.127m * 90.7 kg(9.8m/s^2) cos(5) = 112.56 Nm

112.56Nm = 1147.79kg-cm
```

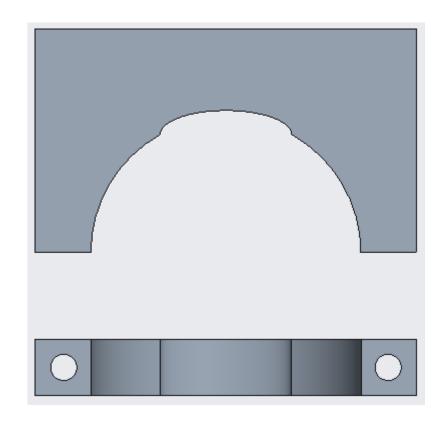
Motor Performance Curves

Current Progress

Concept Selection

Improvement Direction	↑	\downarrow	1	↓ ↓	↑	↑	N/A	↑	N/A	1	
Units	N/A	kg	Dollars	Seconds	Meters	mAh	kg/m^2	cm	m/s	N/A	
Customer Requirements	Importance Weight Factor	Material Durablilty	Weight	Price	Time	Transportation distance	Battery life	Weight Distribution	Drive over obstacles	Speed	Size
Waterproof/ Weatherproof	4	9		3			3				1
Impact Proof	3	9	1	3			3				1
Easy Access to Waste Containers 4		3			3						
Recharging RTC	Recharging RTC 3			9	9		9				
Perform Consistent Transportation	5	9	1	3	3	9	9	3	3	9	3
Ensure RTC doesn't topple	5		3			3		9	9	9	3
RTC must be able to Traverse Incline	4		3	3		3	3	3	9	3	9
User Friendly 3				9		1	1			1	1
	Raw Score	129	35	102	54	75	108	72	96	105	76
	Relative Weight %	15.14	4.11	11.97	6.34	8.80	12.68	8.45	11.27	12.32	8.92
	1	10	4	9	7	2	8	5	3	6	

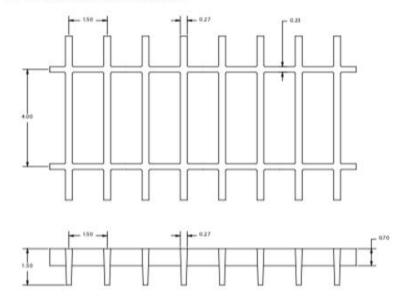
Targets


Target No.	Need	Metric	Imp.	Units	Marginal Value	Ideal Value
1	Transport	Within Destination Target Area	5	meters	1	0.5
2	Battery Life	Capacity V.S. Runtime	5	mAh	3000	4500
3	Transit Stability	Speed V.S. Wind	5	m/s	0.10	0.10
4	Drive over Obstacles	Obstruction Height	3	cm	1	2

Waste Container Capacity

	Garbage Bin	Recycling Bin
Capacity	95 gallons	65 gallons
Bin Weight	35 lbs	28 lbs
Overall Expected Weight including Waste	90 lbs	66 lbs

Motor Supports



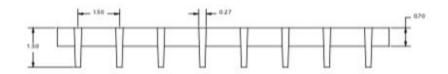
Fiberglass Grating Details

Product Details and Load Tables

Product Details

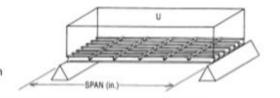
Depths: 1-1/2"

Mesh Pattern: 1-1/2" \times 4"


Panel Size: 4'x 8'
Resin System: Corvex
Surface: Grit

Color: Light Gray

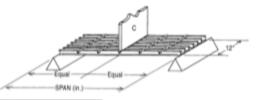
Flame Spread: 25 or less



Fiberglass Grating Details

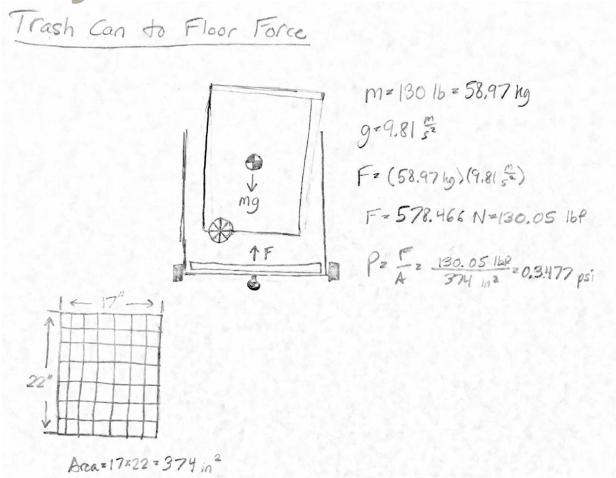
Uniform Load Table - Deflection in Inches

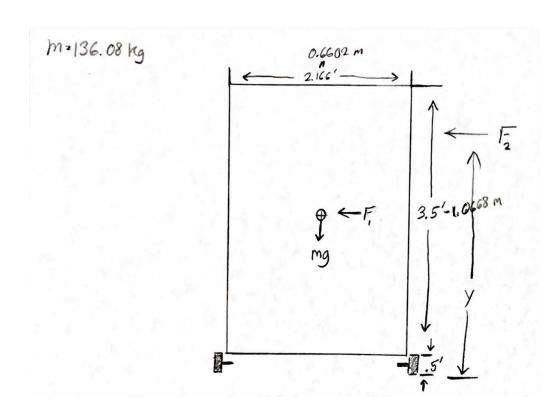
U Uniform Load - psf ΔU Uniform Load Deflection - in

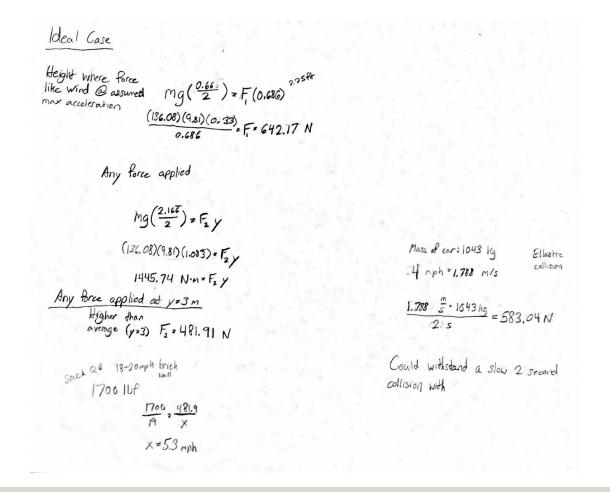


CLEAR	ST	YLE			MAXIMUM	ULTIMATE					
SPAN (in)	DEPTH MESH (in) (in x in)		50	65	100	200	300	500	1000	RECOMMENDED LOAD (psf)	CAPACITY (psf)
12	1-1/2	1-1/2 x 4	<.01	<.01	<.01	<.01	<.01	0.01	0.03	1644	8220
18	1-1/2	1-1/2 x 4	<.01	<.01	0.01	0.02	0.04	0.06	0.12	1180	7080
24	1-1/2	1-1/2 x 4	0.02	0.02	0.04	0.07	0.11	_	_	482	3855
30	1-1/2	1-1/2 x 4	0.04	0.06	0.08	0.17	0.25	-	-	306	2450
36	1-1/2	1-1/2 x 4	0.08	0.11	0.17	0.34	_	_	_	211	1690
42	1-1/2	1-1/2 x 4	0.15	0.20	0.31	-	_	-	-	154	1233
48	1-1/2	1-1/2 x 4	0.26	0.33	0.51	1-	-	-	-	117	938
54	1-1/2	1-1/2 x 4	0.41	0.53	-	-	-			88	704
60	1-1/2	1-1/2 x 4	0.62	0.81	_	-	_	_	-	68	540

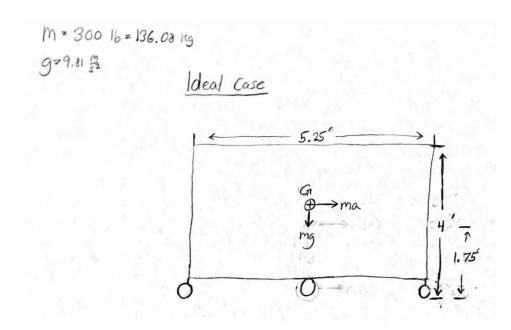
Fiberglass Grating Details

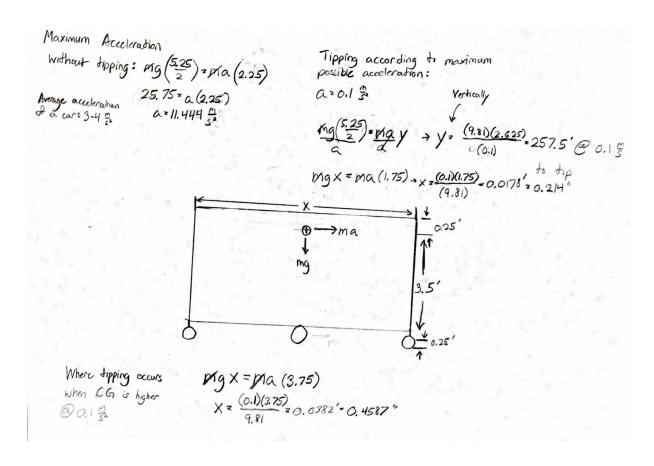

Concentrated Line Load Table - Deflection in Inches




CLEAR				LI	NE LOAD (MAXIMUM	ULTIMATE				
SPAN (in)	DEPTH (in)	MESH (in x in)	50	100	200	300	500	1000	RECOMMENDED LOAD (lb)	CAPACITY (lb)	
12	1-1/2	1-1/2 x 4	<.01	<.01	<.01	0.01	0.02	0.05	1644	8220	
18	1-1/2	1-1/2 x 4	<.01	0.01	0.03	0.04	0.06	_	885	5310	
24	1-1/2	1-1/2 x 4	0.01	0.03	0.06	0.09	_	_	482	3855	
30	1-1/2	1-1/2 x 4	0.03	0.05	0.11	0.16	_	_	383	3063	
36	1-1/2	1-1/2 x 4	0.04	0.09	0.18	0.27	_	_	317	2535	
42	1-1/2	1-1/2 x 4	0.07	0.14	0.28	_	_	_	270	2158	
48	1-1/2	1-1/2 x 4	0.10	0.20	0.41	_	_	_	235	1875	
54	1-1/2	1-1/2 x 4	0.15	0.29		_	_	_	198	1583	
60	1-1/2	1-1/2 x 4	0.20	0.40	-	_	_	_	169	1350	

Force Analysis




Tipping Analysis

Tipping Analysis

Markets

- Residential
 - Elderly living communities
 - Disabled residents
 - Homeowners

- Waste Management Companies (WastePro)
- Construction sites
- Manufacturing facilities
- Companies that have heavy amounts of waste or recyclables

Manufacturing & Revenue

Manufacturing Cost per unit: \$300.00

Potential Revenue Streams:

- Selling directly to homeowners
 - Offering technical support
 - Warranty
- Leasing Contracts
- Service Contracts
- Licensing Contract

The Future of AWR

Single unit waste bins

- Sense when they are full
- Self-navigate to a central waste site
- Streamline waste disposal for businesses

Designed for locales with dense foot traffic

- Amusement Parks and Stadiums
- Universities and college campuses
- Local, state, and federal parks