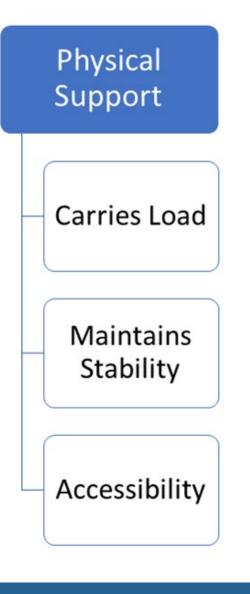



# **ROBOTIC TRASH CART (RTC)** Team 311: Jacob Emerson, Oscar Flores, Bishoy Morkos, John Williams

#### **Project Background**


The Robotic Trash Cart (RTC) will hold and carry both waste containers from the home base to the curb for pick up using a controller. The RTC



design is focused on senior citizens, the disabled community, and people with limited mobility and strength in their extremities.

#### Targets Metr Need Transport Within Destinat Target A Battery Capacity Life Runtime Transit Speed V Stability Stability Drive over Obstruct Obstacles Height

#### **Functional Decomposition**

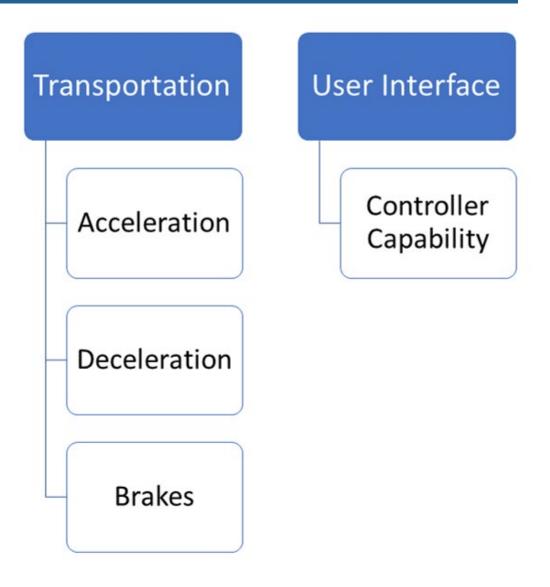


# Markets

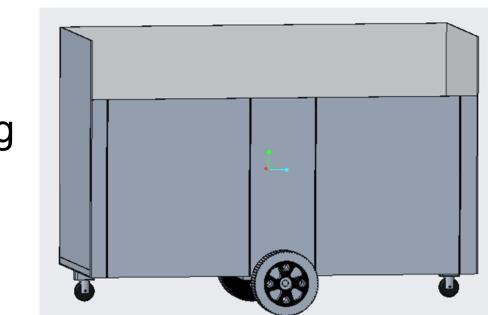
#### **PRIMARY MARKETS:**

- Waste Management Companies
- Senior Citizens
- Disabled Community

#### **SECONDARY MARKETS:**


- Amusement Parks
- Malls and outdoor shopping plazas
- Local, state, and national parks
- Locales with dense foot traffic, such as city centers and plazas

# Assumptions


- Largest gradient that will be traversed is 5 degrees of incline (ADA)
- South Florida weather: rain, wind, humidity
- Pathway is paved
- RTC will be stored outside of the house
- Waste engineers will return the bins to the RTC after dispensing the waste

- Rectangular shape
- Gate allowing easy access to containers
- Mid-Wheel Drive
- corners
- Wireless control

| ric         | Units | Marginal<br>Value | ldeal<br>Value |
|-------------|-------|-------------------|----------------|
| ion<br>Area | m     | 1                 | 0.5            |
| y V.S.      | mAh   | 3000              | 4500           |
| /.S.        | m/s   | 0.10              | 0.10           |
| tion        | cm    | 1                 | 2              |



# Design

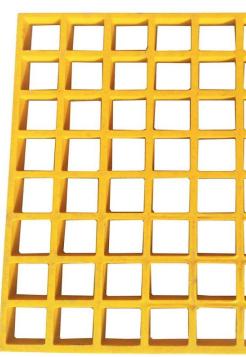


• Caster wheels on the front and back

#### Frame

#### Aluminum Angle Bar:

- <sup>1</sup>/<sub>8</sub>" thick bottom sides of the frame
- 1/20" thick middle of the frame


#### Aluminum Flat Bar:

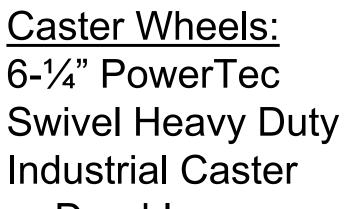
•  $\frac{1}{8}$ " thick - top of the frame

#### Natural HDPE Sheet:

•  $\frac{1}{4}$ " thick - base

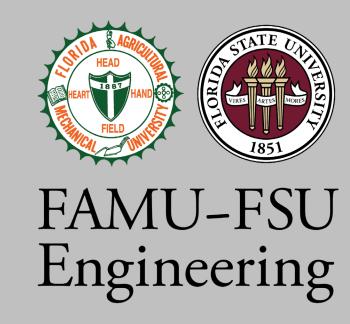
Ideal Base Material: Fiberglass square grating is more durable and prevents any issues with pooling water,




but it is more costly than the HDPE plastic sheets.

### Wheels

Drive Wheels:


Primo Powertrax Foam Filled Scooter Tires

- Holds their shape well
- Puncture resistant
- No maintenance needed



- Durable
- Easily replaced





# **Drive System**

Torque needed for 5° incline:

- $\tau = r * Fcos(\theta) = 0.127m(93kg)(9.8\frac{m}{c^2})\cos(5^\circ)$
- $\tau = 115.3 Nm$

# **Power Supply**

- $P = \tau \omega = (115.3 \, Nm) \cdot \frac{2\pi \left(7.51 \, \frac{rev}{min}\right)}{60} = 90.68 \, W$
- $P = \frac{90.68 \, Watts}{745 \, 7} = 0.12 \, Hp$

## **Control System**

- Raspberry Pi 3B+ Model:
- Large community of users and open source resources
- Meets our processing needs with the best price point.





#### XBox 360 Controller:

- Dual joysticks for separate control of left and right wheels
- Simple retrofitting with a Raspberry Pi SBC

### Looking Ahead

- STRETCH GOAL Self Aware Object Detection Navigation Autonomous
- Find motors and batteries that meet our torque and power needs
- Purchase parts and begin prototyping
- Prepare for InNOLEvation Challenge Competition
- Work on our Stretch Goals of autonomous functionalities

| 1 | 1 |
|---|---|
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |