

Virtual Design Review

Nick Ajhar, Bryce Lankford, Marissa Jackson Team 506: Mobile Anechoic Chamber

13-Nov-18

Team Introductions

Team 506: Mobile Anechoic Chamber

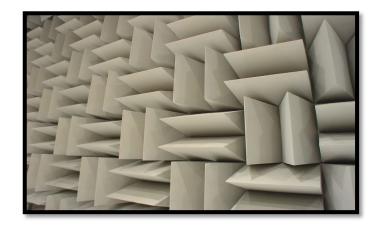
Marissa Jackson Project Manager

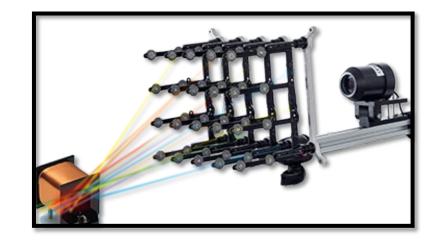
Bryce Lankford Systems Engineer

Nick Ajhar Mechanical Engineer

Objective

Design a way to efficiently and consistently record sound for centrifugal compressors while managing surrounding noise


Customer Needs


- Measure sound across compressors
 - Be able to convert to sound power
 - Consistent reading
- Reduce ambient sound to get most accurate recording
- Store and display the results
- Easy setup and breakdown of system

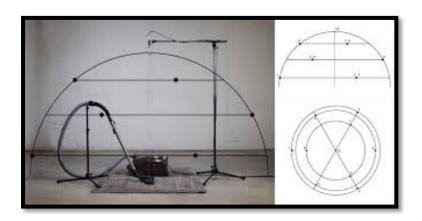
Project Scope- Goals

- Consistently measure the sound power across TT series compressors
- Determine best solution-Anechoic Chamber vs.
 Sound Transducers
- Chosen design will complete our task with high efficiency for the budget

Project Summary

- Measure the sound power of the TT series compressors
- Sound power is the energy emitted by the source and is measured in Watts
- Reduce the surrounding sound to get a consistent reading from the compressors
- Must be able to be easily assembled and portable

Targets


Function	Target
Vibration Detection Device	20-20000 Hz
Measure Sound Pressure	92 dB
Reduce Ambient Sound	± 5 dBA
Weight	50 lbs.
Input Recorded Data	16 Bits
Convert Recorded Sound to Sound Power	± 5W
Output Data	64 GB
Store Data	250 GB
Display Live Feed	1 ms
Compatible with Testing Stand	30 min

MECHANICAL ENGINEERING

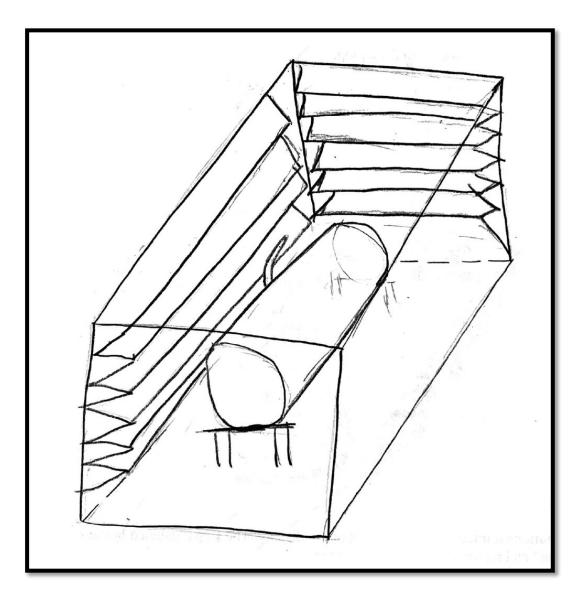
Subsystems

Reduce Ambient Sound

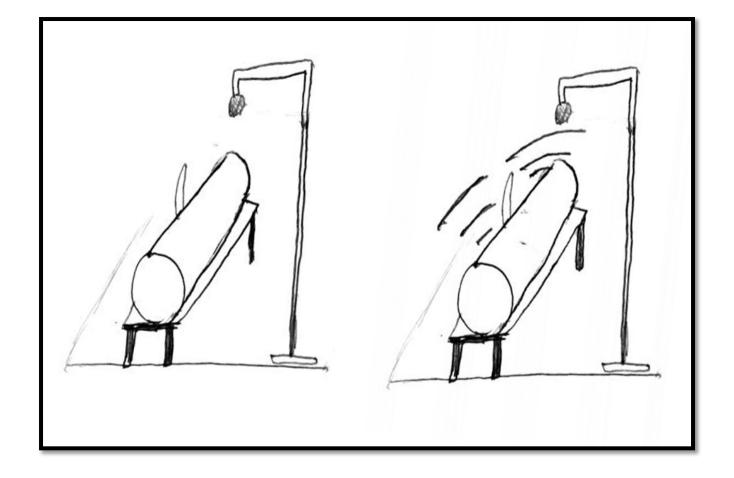
Record Sound

Convert to Sound Power

Bryce Lankford


Reduce Ambient Sound

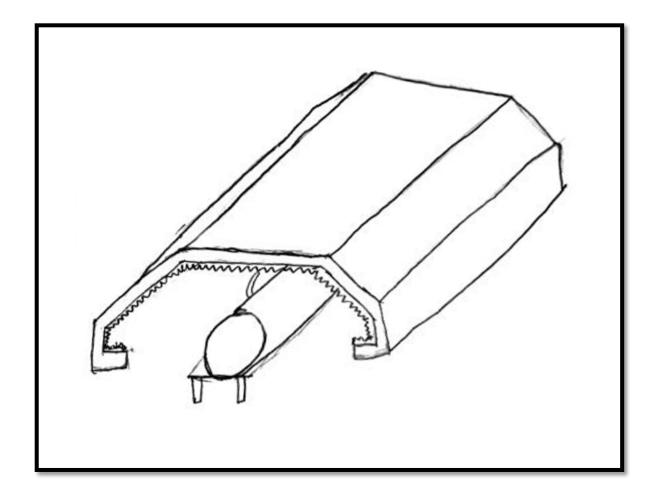
Concept Generation


Concept 1: Full Coverage of Compressor

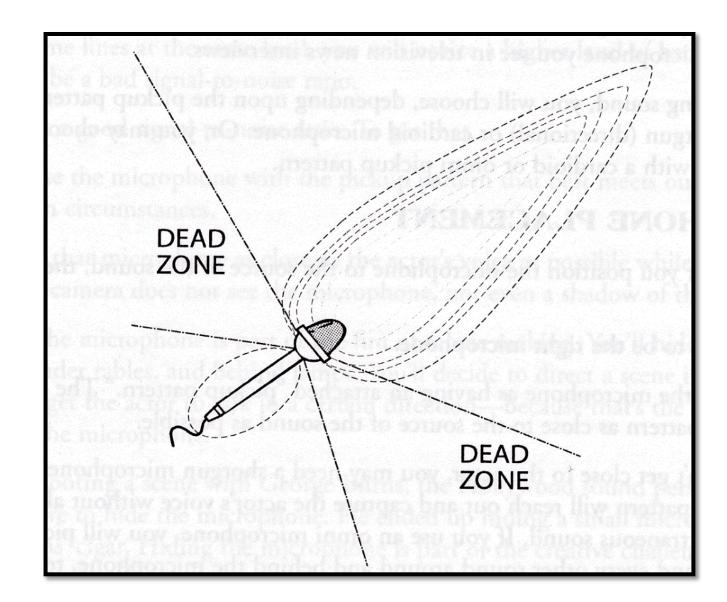
- Completely surrounds compressor in Anechoic Box structure
- Would dampen sound more fully by isolating the compressor stand from the production floor

Concept 2: Record average ambient sound and compare

- Record average shop floor sound at a specific location with the compressor off
- Record average sound at same specific location with compressor running
- Determine how much of a difference between the two



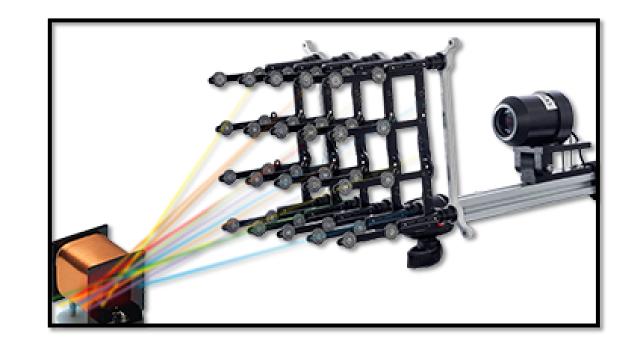
Bryce Lankford


Concept 3: Sound reducing material around compressor

- No special geometric shape
- Material is not anechoic foam but some sort of sound dampening material
- Does not fully encompass the compressor

Concept 4: Directional microphone

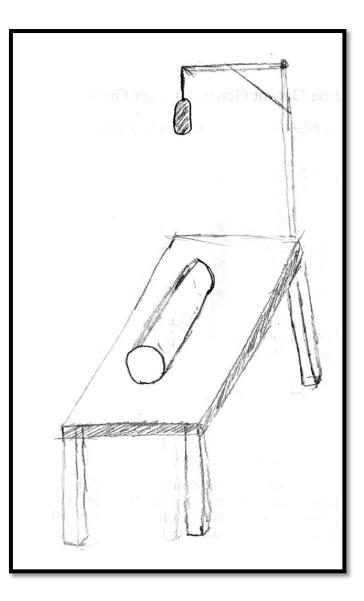
- Used on production studio sets
- Records sound emitted directly in front of microphone
- Dampens ambient sound from behind and directly sides of microphone


Measure Sound Pressure

Concept Generation

Concept 1: Array of Microphones

- Can record sound power over a predetermined area
- Array consists of many preset microphones which all record the same sound source simultaneously
- Has the potential to map sound intensity at specific points on the compressor


Concept 2: Sound Intensity Probe

- Uses two microphones in different orientations
- Device is employed by sweeping across a preset path and a sound intensity value is acquired
- Sound Power can be derived from this by multiplying by the area the user has swept over

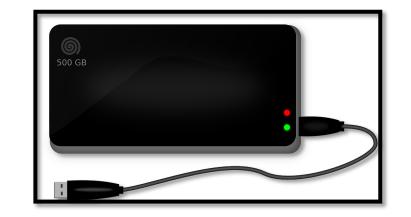
Face-to-face	Side-by-side
Tandem	Back-to-back

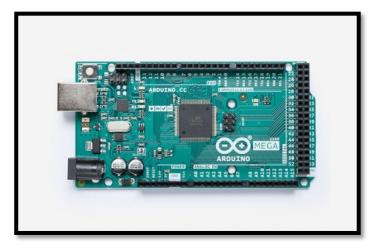
Concept 3: Single Fixed Microphone

- Simple Setup
- Minimal Form Factor inside test chamber
- If surrounding noise is low enough could give usable sound power measurement
- Would require a uniform sound distribution around the test chamber

Convert to Sound Power

Concept Generation




Concept 1: External Storage

- Device would store the data until it is inputted into computer
- Raw Data converted later

Concept 2: Direct Connection

- Setup of a microcontroller that will perform the needed conversions
- Computer program will simultaneously convert data during recording

Concept Selection

- Pairwise Selection
 - Determines the most important customer requirements
- House of Quality
 - Uses results of pairwise selection to determine the relative weight of functional requirements

		Functional Requirements										
	Units	Hz	Pa or dB	W/m^2		W	I	Bytes	Sec	Min	lbs	dBA
Importance Weight Factor	Customer Requirements	Wave length frequency detected	Measured sound pressure	Measured sound intensity	Amount of data that can be input	Sound power conversion	Output Data Digital Format	Memory of storage	Delay of live feed	Time to set up ad break down	Weight of System	Recorded ambient Sound
6	1. Measure Sound	9	9	9		3						9
5	2. Compatible with Testing Station		3	3						9	9	
3	3. Store Data	3			9	3	3	9				
2	4. Display Data	3			9	3	9	1	9			
7	5. Consistent Recording	9	9	9	3	3	1					9
8	6. Convert to Sound Power	9	9	9								9
1	7. Ease of Conversion	1	1	9	3				1			3
2	8. Reduce ambient sound	3	9	1		3						9
3	9. Mobility of system		1	1				1		9	9	
	Relative Weight	21%	22%	22%	7%	6%	3%	3%	2%	7%	7%	21%
	Rank Order	3	1	2	6	7	8	9	10	5	5	4

Concept Selection

• Pugh Chart

- Determines the best concept out of concept generation
- Subsystem 1:
 - Anechoic Chamber
 - Sound Dampening Container
- Subsystem 2:
 - Array of Microphones
 - Sound intensity probe

	Initial Pugh Matrix for Subsystem 1											
Selection Criteria		Concepts										
			1		2		3		4			
Measure Sound Pressure		+	-	S		+	-	+	-			
Wavelength frequency detected		S		S	4	S	•	S	~			
Recorded ambient sound	Datum	+	-	-	-	+	-	+	-			
Time to set up and break down system	Dat	-	-	S		-	-	-	-			
Weight of system		-	-	S		-	-	-	-			
Cost		-	-	S		-	-	-	-			
Ease of Conversion		+	-	-	•	+	-	+	-			
Sum of Positive		3		0		3		3				
Sum of Negative		3		2		3		3				

Datum: Current testing lab they have with standard microphone

Nick Ajhar

Concept Selection

- Criteria Comparison Matrix
 - Determines the importance of requirements for different subsystems
 - Selects best concept of remaining options

Final Concepts							
Reduce Ambient Sound	Measure Sound Pressure	Convert to Sound Power					
Anechoic Chamber	Array of Microphones	Direct Connection					

Nick Ajhar

Summary

- From targets that were established based on customer needs, concept generation was completed
- Based on customer needs and targets a house of quality was established
- From House of Quality and Pugh Matrix concept selection was completed
- Final concept is an anechoic chamber, array of microphones, and direct connection

Nick Ajhar

References

- Danfoss Turbocor TT. (n.d.). Retrieved from <u>https://www.danfoss.com/en/products/compressors/dcs/turboc</u> or/turbocor-tt/#tab-overview
- Brüel & Kjær. (1993). Sound Intensity. Retrieved from
- <u>https://www.bksv.com/media/doc/br0476.pdf</u>
- Arduino. Microcontroller. Retrieved from https://www.arduino.cc/
- Seinheiser. Preamp. Retrieved from https://en-us.sennheiser.com/

Questions?

Preliminary Data

From a test Danfoss previously conducted, the level of sound from the compressors was measured and averaged.

- Ambient Sound Level 78 dB(A)
- Compressor Sound Level 92 dB(A)

Next Steps

- Targets and Metrics
 - Consistency of sound power range
 - Display the data collected
- Concept Generation and Selection
 - Design of various systems
 - Selection of design using house of quality

Pairwise Selection

Pairwise Selection										
	1	2	3	4	5	6	7	8	9	Sum
1. Measure Sound	-	1	1	1	0	0	1	1	1	6
2. Compatible with Testing Station	0	-	1	1	0	0	1	1	1	5
3. Store Data	0	0	-	1	0	0	1	0	1	3
4. Display Data	0	0	0	-	0	1	1	0	0	2
5. Consistent Recording	1	1	1	1	-	0	1	1	1	7
6. Convert to Sound Power	1	1	1	1	1	-	1	1	1	8
7. Ease of Conversion	0	0	0	0	0	0	-	1	0	1
8. Reduce ambient sound	0	0	1	1	0	0	0	-	0	2
9. Mobility of system	0	0	0	1	0	0	1	1	-	3
Sum	2	3	5	7	1	1	7	6	5	n-1=7

Pugh Matrix

Secondary Pugh Matrix for Subsystem 1										
Selection Criteria		Concepts								
			1		3					
Measure Sound Pressure		+	•	+	-					
Wavelength frequency detected	4	S	4	S	•					
Recorded ambient sound	ept	+	•	+	-					
Time to set up and break down system	Concept 4	-	4	-	-					
Weight of system	0	-	•	-	-					
Cost		-	•	+	-					
Ease of Conversion		+	4	+	-					
Sum of Positive		3		4						
Sum of Negative		3		2						

Criteria Comparison Matrix

Criteria Comparison Matrix for Subsystem 1										
	Measure Sound Pressure	Wavelength Frequency Detected	Recorded Ambient Sound	Time to set up and break down	Weight of system	Sound power conversion				
Measure Sound Pressure	1.00	3.00	<mark>0.1</mark> 4	0.20	0.20	3.00				
Wavelength frequency detected	0.33	1.00	0.14	0.20	0.14	3.00				
Recorded ambient sound	7.00	7.00	1.00	7.00	7.00	7.00				
Time to set up and break down system	5.00	5.00	0.14	1.00	0.33	5.00				
Weight of system	5.00	5.00	0.14	3.00	1.00	1.00				
Sound power conversion	0.33	0.33	0.14	0.20	1.00	1.00				
Sum	18.67	21.33	1.71	11.60	9.68	20.00				

Normalized Criteria Comparison Matrix for Subsystem 1										
	Measure Sound Pressure	Wavelength Frequency detected	Record ambient sound	Time to set up and break down system	Weight of system	Sound power conversion	Weight			
Measure Sound Pressure	0.05	0.14	0.08	0.02	0.02	0.15	7.76%			
Wavelength frequency detected	0.02	0.05	0.08	0.02	0.01	0.15	<mark>5.50%</mark>			
Recorded ambient sound	0.38	0.33	0.58	0.60	0.72	0.35	49.39%			
Time to set up and break down system	0.27	0.23	0.08	0.09	0.03	0.25	15.94%			
Weight of system	0.27	0.23	0.08	0.26	0.10	0.05	16.63%			
Sound power conversion	0.02	0.02	0.08	0.02	0.10	0.05	4.79%			
Sum	1.00	1.00	1.00	1.00	1.00	1.00	1.00			