Mobile Anechoic Test Chamber

Team: 506

Nick Ajhar, Marissa Jackson, Bryce Lankford March 26, 2019

Team Introductions

Marissa Jackson Project Manager

Bryce Lankford Systems Engineer

Nick Ajhar Mechanical Engineer

This engineering project, "Mobile Anechoic Test Chamber," is funded by Danfoss Turbocor.

Design a way to efficiently and consistently record sound power for centrifugal compressors while managing surrounding noise

Project Background

Nick Ajhar

Department of Mechanical Engineering

Centrifugal Compressors

- TT Series
 - 4 Different Models: 300, 350, 400, 700
- Capacities: 211-702 kW
- Quiet Operation (92 dB)
- Background noise (78 dB)

Sound Power

- Rate at which sound is emitted
- Measured in Watts (W)
- Deviated from sound pressure (dB)
- Indicator for how intense the sound of a machine will be

Sound Power Comparisons

Turboprop Plane 100 W Rifle 1 W

Diesel Truck 0.001 W

Department of Mechanical Engineering

Project Summary

- Measure the sound power of the TT series compressors
- Sound power is the energy emitted by the source and is measured in Watts
- Reduce the surrounding sound to get a consistent reading from the compressors
- Must be able to be easily assembled and portable

Functional Decomposition

Concept Generation

Marissa Jackson

Department of Mechanical Engineering

Ambient Noise

- ISO 3746
 - Background noise must be greater than 3dB below the mean sound pressure level of source
- Low pass filter will be used for unwanted sounds

Sound Recording

- Array of Microphones
 - 2 microphones equidistant around compressor
 - Microphones can be moved to different locations about arc
 - Multiple locations can eliminate spatial error

Conversion to Sound Power

- Direct connection from microphones to computer
- Program to convert data to sound power after initial data is converted to decibels
- Low pass filter removes unwanted noise from data

Data Acquisition

Marissa Jackson

Department of Mechanical Engineering

Sound Power Level (dB)

- Conversion to Sound Power Level $L_w = L_p + |10 * \log(\frac{Q}{4\pi R^2})|$
 - *L_w* Sound Power Level (dB-SWL) *L_p* Sound Pressure Level (dB) *Q* Directivity Factor
 - R Radius (m)

Sound Power (Watts)

Conversion to Sound Power

$$P_{ac} = P_{ac,o} * 10^{L_w/10}$$

Т

- *P*_{ac} Sound Power (W)
- $P_{ac,o}$ Reference Sound Power ($10^{-12} W = 0 dB SWL$)
- L_w Sound Power Level (dB-SWL)

Sample Code

Embodiment

Bryce Lankford

Department of Mechanical Engineering

Acquiring Materials

Part Name	Part Number	Quantity	Ordered	Ordered Date	Cost	Expected delivery
Microphone (1/2")	SD506001	2	Yes	2/15/2019	\$ 495.00	3/1/2019
Digital ICP – USB Signal Conditioner	SD506002	1	Yes	2/15/2019	\$ 950.00	3/15/2019
BNC Cable (6 Feet)	SD506003	2	Yes	2/6/2019	\$ 8.95	2/8/2019
Sleeve Bearing Carriage	SD506004	2	Yes	2/6/2019	\$ 95.85	2/13/2019
Guide Rail (250mm)	SD506005	2	Yes	2/6/2019	\$ 20.00	2/13/2019
M5 Fastener (Pack of 4)	SD506006	1	Yes	2/6/2019	\$ 4.27	2/13/2019
Microphone holder (Clip)	SD506007	2	Yes	2/6/2019	\$ 5.95	2/13/2019
M4 Fastener (Pack of 25)	SD506008	1	Yes	2/6/2019	\$ 4.13	2/13/2019
				Sum	\$ 2,293.34	

Design Overview

- Smaller structure for holding microphones
- No need for anechoic foam
- Movable microphones
- Better accessibility to compressor
- Consistent radius for microphone
 - placement
- Room for additions

Detailed Design

- Sliding mechanism to maneuver array to different positions
- Arc is welded to plate on sleeve carriage
- Track fits 80/20 posts

- Microphones can be positioned into different pre-drilled holes
- Holes will be at 15° increments
- More microphones can be added

Testing Protocol – Microphones

- 1. Find reference source
- 2. Attach microphones to DAQ system
- 3. Play audio from source
- 4. Record sound with microphones at 37 in
- 5. DAQ converts recorded data to pressure values in dB
- 6. Conversion program converts pressure values to power values
- 7. Check outputted data with reference values
- 8. Redo steps with compressor

Testing Protocol – Mobility

- 1. Start timer
- 2. Bolt rail system onto 80/20 on the test stand
- 3. Bolt arc bracket to sleeves on rail system
- 4. Screw microphones onto holsters on the arc bracket
- 5. Plug BNC cables into microphone and DAQ system
- 6. Plug DAQ system into computer
- 7. Stop timer

Testing of Targets

Function	Target	Pass or Fail Target		
Vibration Detection	20-20,000 Hz	PASS		
Measure Sound Pressure	92 dB	N/A		
Deviation of Sound Power	± 0.05 Watts	N/A		
Compatible with Testing Stand	30 min	N/A		

Problems Encountered and Solutions

- Laser to cut metal parts
 broke down
- Data acquisition system lead time extended
- Bolts would not sit flush on curved bracket

Future Work

- Program the microphones and DAQ system
- Calibrate and test microphone system with reference speaker
- Testing protocol for mobility
- Implement any changes necessary
- Final testing
- Engineering Design Day

Questions?

Department of Mechanical Engineering

Most Important Points from this Lecture

- 1. The quick brown fox jumps over the lazy dog.
- 2. The quick brown fox jumps over the lazy dog.
- 3. The quick brown fox jumps over the lazy dog.
- 4. The quick brown fox jumps over the lazy dog.
- 5. The quick brown fox jumps over the lazy dog.
- 6. The quick brown fox jumps over the lazy dog.

Reference

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.

Questions (be sure to design your own)

Backup Slides

Department of Mechanical Engineering

