Human Powered Vehicle (HPV)

13 November 2018

TEAM MEMBERS

Tyler Schilf Tristan Enriquez Jacob Thomas Kyler Marchetta

Project Manager

Steering Engineer



Powertrain Engineer Ergonomics Engineer

Project Review

FAMU-FSU College of Engineering

Competition Objectives

- Methodology
- Testing and Analysis
- Safety
- Aesthetics

Speed

- Timed race
- Top speed
- Men and Women

Endurance

- Agility, Utility and Durability
- Obstacles
- Inclines and Declines
- Tight turning

Mission Objective:

Produce a vehicle for the Human Powered Vehicle Competition (HPVC) that a rider will mechanically power and control through their input force.

Project Budget: \$2,000

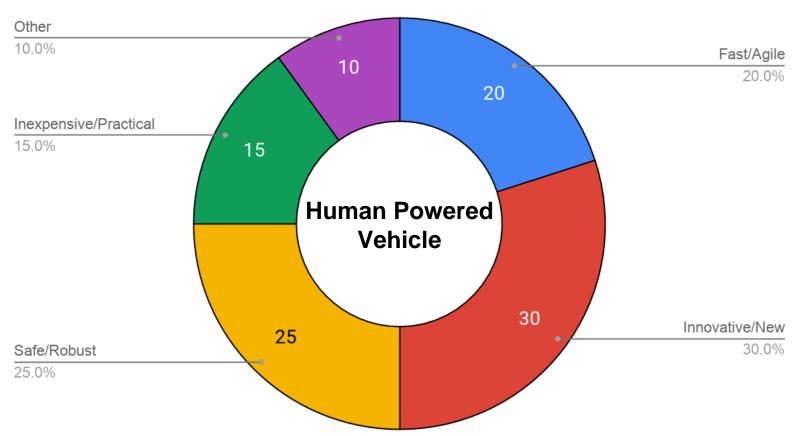
Competition Objectives

- Methodology
- Testing and Analysis
- Safety
- Aesthetics

Speed

- Timed race
- Top speed
- Men and Women

Endurance


- Agility, Utility and Durability
- Obstacles
- Inclines and Declines
- Tight turning

Mission Objective:

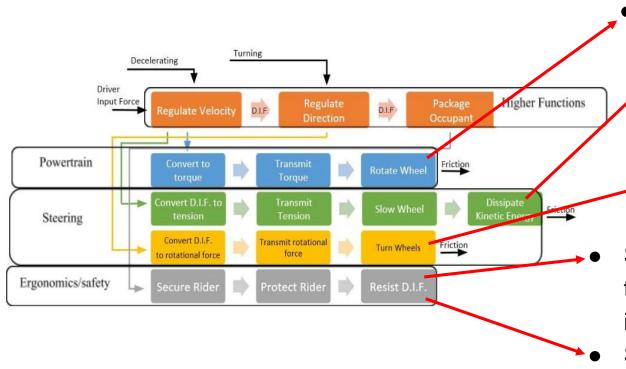
Produce a vehicle for the Human Powered Vehicle Competition (HPVC) that a rider will mechanically power and control through their input force.

Project Budget: \$2,000

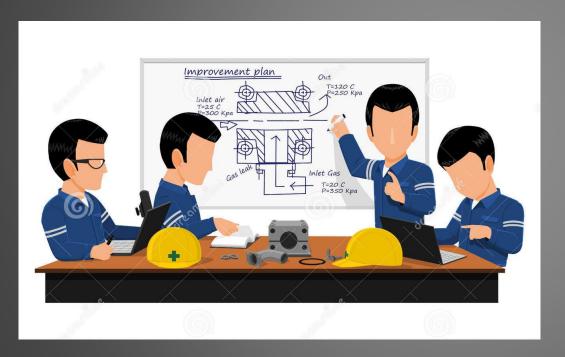
Customer Needs

Functional Breakdown

Targets/Metrics



Brake in 4 m at a speed of 25 km/h


Turning radius of 6.0 m

Supports 2670 N applied to top roll protection system (rps) in the event of a rollover

Supports 1330 N applied to roll bar at shoulder height mas 7

Concept Generation

Concept Generation

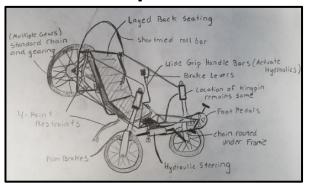


Figure 1: Concept 42

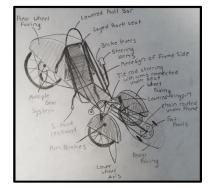


Figure 2: Concept #85

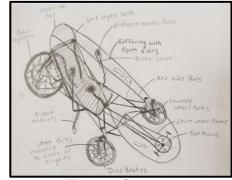


Figure 3: Concept #92

Concept #42

- -Push/Pull lever actuate rim brakes
- -Hydraulic Steering
- -No fairing

Concept #85

- -Hand lever steering
- -Brake lever on handle actuate rim brakes
- -Nose, front, and rear wheel fairings

Concept #92

- -Hand lever steering
- -Brake lever on handle actuates disc brake
- -Full fairing with open sides

Concept Generation

The next three most plausible concepts for comparison...

Concept #24

- Disc brakes
- Partial Fairing
- Tie rod steering
- 3 point safety harness

Concept #58

- Direct tie rod steering
- Belt and CVT
- Car strap restraint
- Leaf spring suspension
- Disc Brakes

Concept #87

- Rack and pinion steering
- Steering column with wheel
- Partial fairing
- Hand lever brake actuation

Concept Selection

House of Quality Chart (HOQ)

						Н	OUSE	OF QUA	ALITY											
										g Chara	acterist	ics								
Units		MPa	m/s	m	m	kg	m^2	W	W	Cd	m	m	N	N	N	s	deg	USD	N/A	m^3
Customer Requirements	Importance Weight Factor	Strength	Speed	Braking Distance	Turning Radius	Weight	Foot Print Area	Cruisng Power on 0% Grade	Cruising Power > 0% Grade	Drag Coefficient	Height	Length	Brake Force	Pedal Force	Steering Force	Enter/Exit Time	Rider Position	Cost	Complexity	Rider Cabin Space
Protects Rider/Robust	9	9	0	9	9	1	0	0	0	0	3	0	1	0	1	1	3	1	3	1
Turns Quickly	7	0	1	1	9	9	3	0	0	1	3	3	1	0	9	0	1	0	1	0
Is lightweight	5	3	9	9	3	9	1	3	9	0	1	1	0	3	3	0	0	9	3	0
Visually Appealing	1	1	0	0	0	0	0	0	0	3	3	3	0	0	0	1	9	3	9	3
Comfortability	5	1	0	0	0	0	1	1	1	3	3	3	3	3	3	3	5	3	3	9
Affordability	2	9	3	3	0	3	0	0	0	9	0	0	0	1	0	0	0	9	9	0
High Top Speed	5	0	9	0	0	9	0	3	3	9	1	1	0	3	1	0	1	9	3	0
Low Drag	1	0	9	0	1	0	9	9	3	9	3	3	0	1	0	3	1	9	9	3
Brakes Quickly	8	0	1	9	1	9	1	0	0	3	1	1	9	0	0	0	0	9	9	0
Easily Maintained	2	0	0	0	0	3	0	0	0	3	0	0	0	0	0	0	0	9	9	1
Raw Score (1153)		120	120	211	168	246	48	44	68	127	87	60	103	48	107	28	74	234	205	62
Relative Weight %		5.556		9.769	7.778		2.222	2.037	3.148	5.880	4.028		4.769			1.296		10.833		
Rank Order		7	7	3	5	1	16	18	13	6	11	15	10	16	9	19	12	2	4	14

Table 1: House of Quality

House of Quality Chart (HOQ)

							OLIOF	05.011	NI ITY											
						Н	UUSE	OF QUA												
	Engineering Characteristics																			
Units		MPa	m/s	m	m	ka	m^2	W	W	Cd	m	m	N	N	N	s	deg	USD	N/A	m^3
Customer Requirements	Importance Weight Factor	Strength	Speed	Braking Distance	Turning Radius	Weight	Foot Print Area	Cruisng Power on 0% Grade	Cruising Power > 0% Grade	Drag Coefficient	Height	Length	Brake Force	Pedal Force	Steering Force	Enter/Exit Time	Rider Position	Cost	Complexity	Rider Cabin Space
Protects Rider/Robust	9	9	0	9	9	1	0	0	0	0	3	0	1	0	1	1	3	1	3	1
Turns Quickly	7	0	1	1	9	9	3	0	0	1	3	3	1	0	9	0	1	0	1	0
Is lightweight	5	3	9	9	3	9	1	3	9	0	1	1	0	3	3	0	0	9	3	0
Visually Appealing	1	1	0	0	0	0	0	0	0	3	3	3	0	0	0	1	9	3	9	3
Comfortability	5	1	0	0	0	0	1	1	1	3	3	3	3	3	3	3	5	3	3	9
Affordability	2	9	3	3	0	3	0	0	0	9	0	0	0	1	0	0	0	9	9	0
High Top Speed	5	0	9	0	0	9	0	3	3	9	1	1	0	3	1	0	1	9	3	0
Low Drag	1	0	9	0	1	0	9	9	3	9	3	3	0	1	0	3	1	9	9	3
Brakes Quickly	8	0	1	9	1	9	1	0	0	3	1	1	9	0	0	0	0	9	9	0
Easily Maintained	2	0	0	0	0	3	0	0	0	3	0	0	0	0	0	0	0	9	9	1
Raw Score (1153)	Ī	120	120	211	168	246	48	44	68	127	87	60	103	48	107	28	74	234	205	62
Relative Weight %		5.556	5.556	9.769	7.778	11.389	2.222	2.037	3.148	5.880	4.028	2.778	4.769	2.222	4.954	1.296	3.426	10.833	9.491	2.870
Rank Order		7	7	3	5	1	16	18	13	6	11	15	10	16	9	19	12	2	4	14

Table 1: House of Quality

Figure 4: GT20 Recumbent Trike

Initial Pugh Chart

Six concepts compared to the GT20

"A carefully engineered, lightweight frame, low rolling resistance tires, and an efficient drivetrain..."

	Datum Comparison			Design Conce	epts Numbers		
Engineering Characteristics	Green Speed GT20	42	85	92	87	58	24
Weight	Datum	1	1	1	ı	ı	-
Cost	Datum	-	+	+	-	1	+
Braking Distance	Datum	1	-	S	1	S	S
Complexity	Datum	ı	+	S	ı	ı	S
Turning Radius	Datum	+	S	S	+	S	S
Total (+)		1	2	1	1	0	1
Total (-)		4	2	1	4	3	1

Table 2: Initial Pugh Chart

Kyler Marchetta 14

Initial Pugh Chart

Six concepts compared to the GT20

Figure 4: GT20 Recumbent Trike

	Datum Comparison			Design Conc	epts Numbers		
Engineering Characteristics	Green Speed GT20	42	85	92	87	58	24
Weight	Datum	-	ı	1	-	- /	-
Cost	Datum	\	+	+	\	\	+
Braking Distance	Datum		ı	S	\wedge	60	S
Complexity	Datum	-	+	S	-	-	S
Turning Radius	Datum	+	S	S	+	S	S
Total (+)		1	2	1	1	0	1
Total (-)		4	2	1	4	3	1

Table 2: Initial Pugh Chart Kyler Marchetta 15

Initial Pugh Chart

Six concepts compared to the GT20 New Datum Figure 4: GT20 Recumbent Trike Datum Comparison Design Concepts Numbers Engineering Characteristics Green Speed GT20 42 85 92 87 58 24 Weight Datum + + Cost Datum S S **Braking Distance** Datum S S Complexity Datum S S S S Turning Radius Datum Total (+) 0 Total (-) 4

Kyler Marchetta 16

Final Pugh Chart

	Datum Comparison	Design Conce	epts Numbers
Engineering Characteristics	24	85	92
Weight	Datum	-	-
Cost	Datum	S	-
Braking Distance	Datum	1	S
Complexity	Datum	1	-
Turning Radius	Datum	S	S
Total (+)		0	0
Total (-)		3	3

Table 3: Final Pugh Chart

Final Pugh Chart

Cost is Heavily Weighted (number 2 from HOQ)

	Datum Comparison	Design Conce	epts Numbers
Engineering Characteristics	24	85	92
Weight	Datum	-	-
Cost	Datum	S	(-)
Braking Distance	Datum	1	S
Complexity	Datum	1	-
Turning Radius	Datum	S	S
Total (+)		0	0
Total (-)		3	3

Table 3: Final Pugh Chart

Final Pugh Chart

	Datum Comparison	Desian Conce	epts Numbers
Engineering Characteristics	24	85	92
Weight	Datum	-	_ /
Cost	Datum	S	\-/
Braking Distance	Datum	-	Ä
Complexity	Datum	-	/- \
Turning Radius	Datum	S	/ s \
Total (+)		0	0
Total (-)		3	3

Table 3: Final Pugh Chart

Analytical Hierarchy Process (Concepts 24 and 85)

Table 4: Weight Matrix

	Weight	Cost	Braking Distance	Complexity	Turning Radius	Criteria Weights
Weight	0.045	0.021	0.059	0.161	0.032	0.064
Cost	0.225	0.107	0.176	0.226	0.045	0.156
Braking Distance	0.405	0.321	0.529	0.290	0.674	0.444
Complexity	0.009	0.015	0.059	0.032	0.025	0.028
Turning Radius	0.315	0.535	0.176	0.290	0.225	0.308
Totals	1.000	1.000	1.000	1.000	1.000	1.000

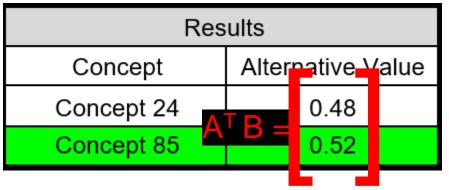
Table 5: Alternative Design Weight

Matrix	Final Rating Matrix	(
	Disc Brakes	Rim Brakes
Weight	0.83	0.17
Cost	0.1	0.9
Turning	0.75	0.25
Braking	0.88	0.13
Complexity	0.17	0.83

Table 6: AHP Decision Results

Results							
Concept	Alternative Value						
Concept 24	0.48						
Concept 85	0.52						

Analytical Hierarchy Process (Concepts 24 and 85)


Table 4: Weight Matrix

	Weight	Cost	Braking Distance	Complexity	Turning Radius	Crit	eria Weights
Weight	0.045	0.021	0.059	0.161	0.032		0.064
Cost	0.225	0.107	0.176	0.226	0.045		0.156
Braking Distance	0.405	0.321	0.529	0.290	0.674		0.444
Complexity	0.009	0.015	0.059	0.032	0.025		0.028
Turning Radius	0.315	0.535	0.176	0.290	0.225		0.308
Totals	1.000	1.000	1.000	1.000	1.000		1.000

Table 5: Alternative Design Weight

Table of Filternative						
Matrix	Final Ra	iting Matrix				
	Disc	Disc Brakes Rim Brakes				
Weight		0.83	0.17			
Cost		0.1	0.9			
Turning F	<i>\</i> = <i>\</i>	0.75	0.25			
Braking		0.88	0.13			
Complexity		0.17	0.83			

Table 6: AHP Decision Results

Final Decision (Concept 85)

Features:

- 5-Point Restraint
- 10 speed transmission
- Wide Grip Handlebar Steering
- Laid Back Rider Position
- Minimal Fairings
- Adjustable Pedal Mount
- Front Wheel Rim Brakes

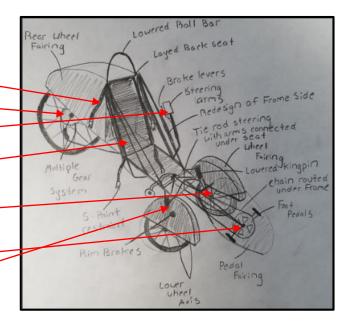
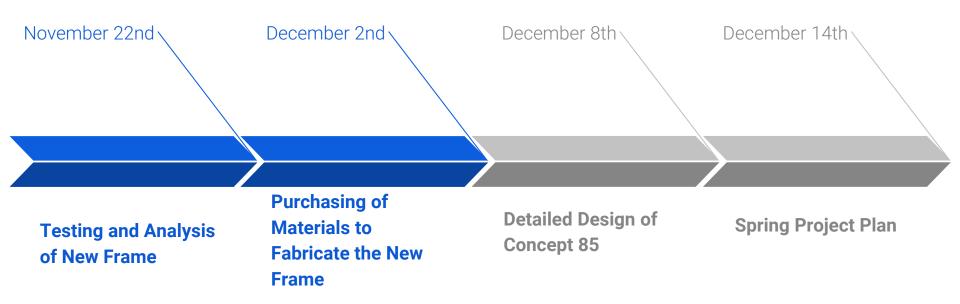


Figure 5: Rough Conceptual Sketch


Old Frame

New Frame

Looking Ahead...

References

- 1. ASME (2018). *Rules for the 2018 Human Powered Vehicle Challenge*. Retrieved from: https://www.asme.org/events/competitions/human-powered-vehicle-challenge-(hpvc)
- 2. Backcountry Recumbent Bicycles. (2018) Retrieved from: http://www.backcountryrecumbentcycles.com/shop/greenspeed-gt20/
- 3. Bauer, B., Bohne, E., Lanier, P., MacDonnell, G., & Rodriguez, M. (2017). *Virtual Design Review 4 Team 20*. Retrieved from: https://www2.eng.famu.fsu.edu/me/senior_design/2018/team20/4thVDR.pdf

Questions?

Tyler Schilf Tristan Enriquez Jacob Thomas Kyler Marchetta

Project Manager

Steering Engineer

Powertrain Engineer Ergonomics Engineer



