Payload Stabilization System

Team 517

April 2, 2019

Team Introductions

FAMU-FSU College of Engineering

Ariel Mathias Team Lead & Controls Engineer

Junyi Wang Mathematician

John Bryant Programmer

Tristan Kirby CAD Engineer

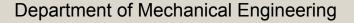
Anthony Wyrick Systems Engineer

Sponsor & Academic Advisor

Thank you to our sponsor, Northrop Grumman,

for their contributions to the project. We're grateful for their support of engineering pursuits at FAMU-FSU College of Engineering.

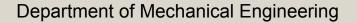
Thank you to our academic advisor, Dr. Camilo Ordonez, for his knowledge and expertise on the project.



Objective

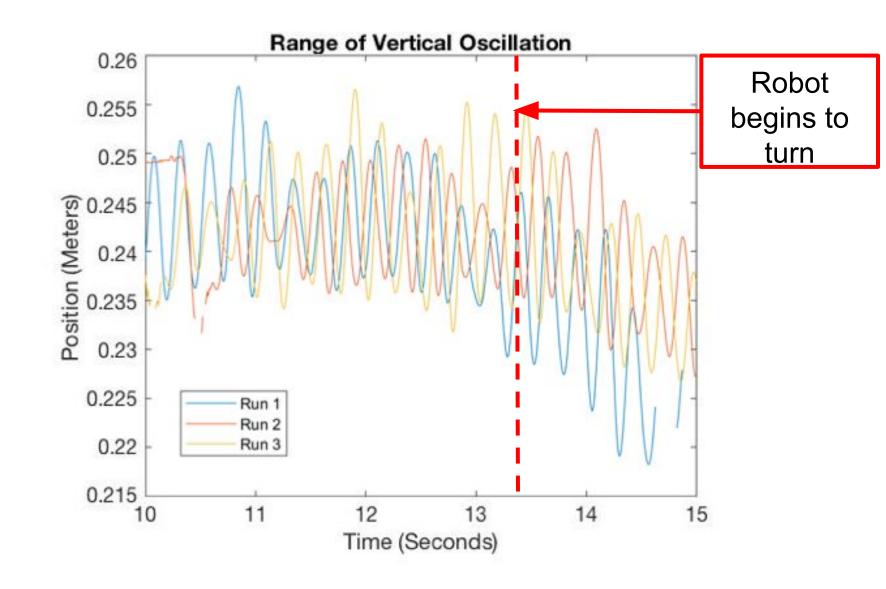
Build a system that stabilizes the payload of legged robots

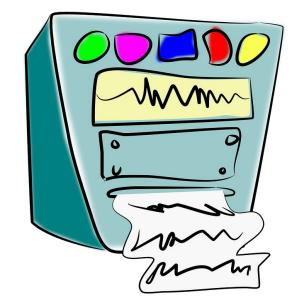
Ariel Mathias



4

Minitaur in Motion




Ariel Mathias

Baseline Data

Project Background

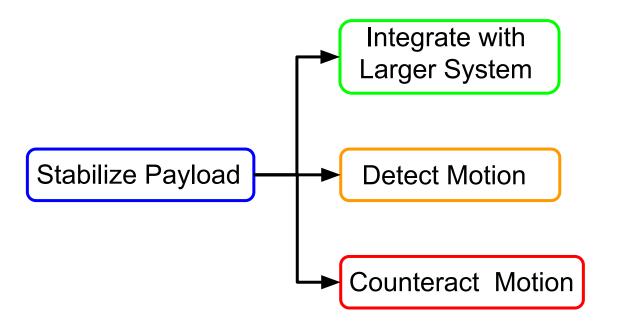
Ariel Mathias

7

Customer Needs

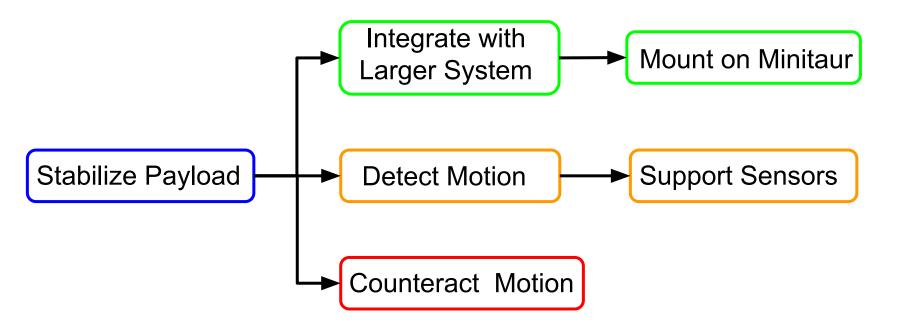
- Improved system for payload stabilization
- Provide better return data
- Utilize a pre-existing robot as a baseline for data
- Reduce the levels of oscillation in the feedback of a system that occur at the center of the robot's mass

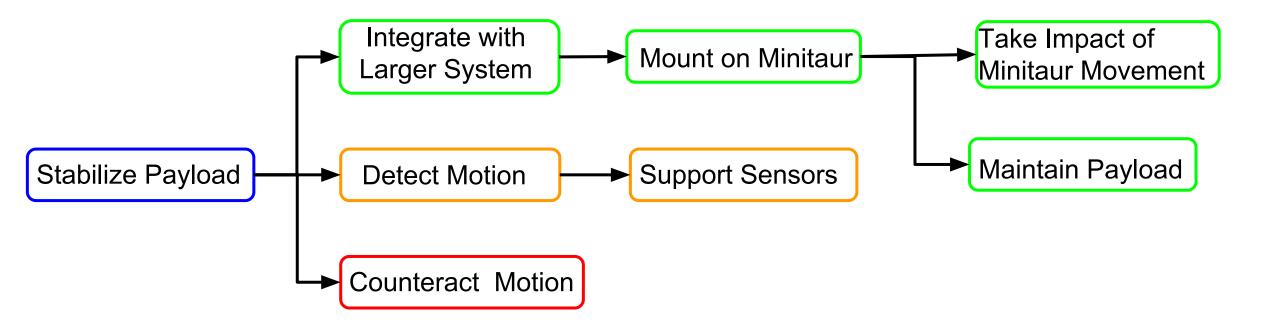
Ariel Mathias



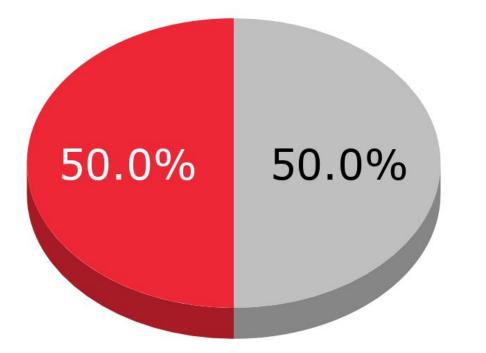
Stabilize Payload

Ariel Mathias


9


Ariel Mathias

Ariel Mathias



Ariel Mathias

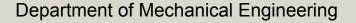
Targets and Metrics

Minimum Correction Factor

Maximum System Weight

Ariel Mathias

10



Tristan Kirby

Concept Generation

	Concept 1	
Description	4 servo motors to correct x,y,z and angle	
Pros	fast, effective	
Cons	heavy	

Concept Generation

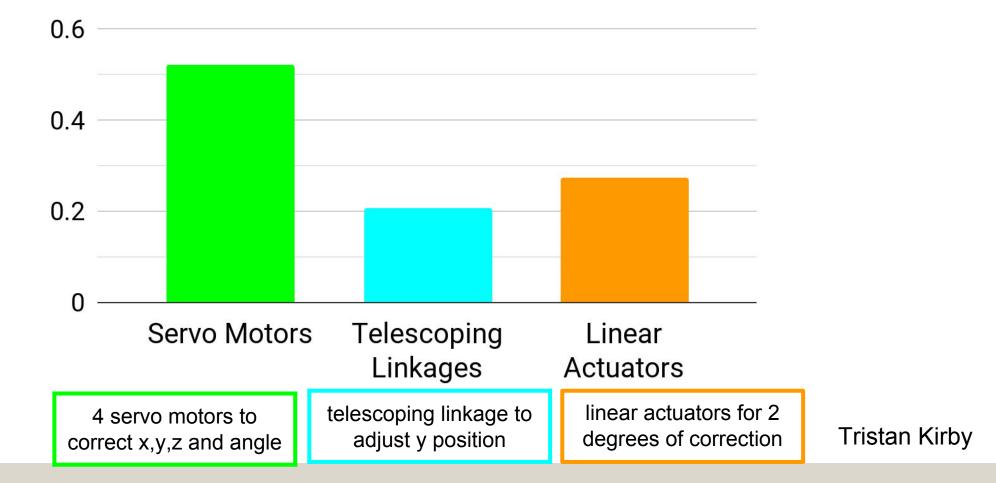
	Concept 1	Concept 2
Description	4 servo motors to correct x,y,z and angle	telescoping linkage to adjust y position
Pros	fast, effective	simple, lightweight
Cons	heavy	limited effectiveness

Concept Generation

	Concept 1	Concept 2	Concept 3
Description	4 servo motors to correct x,y,z and angle	telescoping linkage to adjust y position	linear actuators for 2 degrees of correction
Pros	fast, effective	simple, lightweight	lightweight
Cons	heavy	limited effectiveness	slow

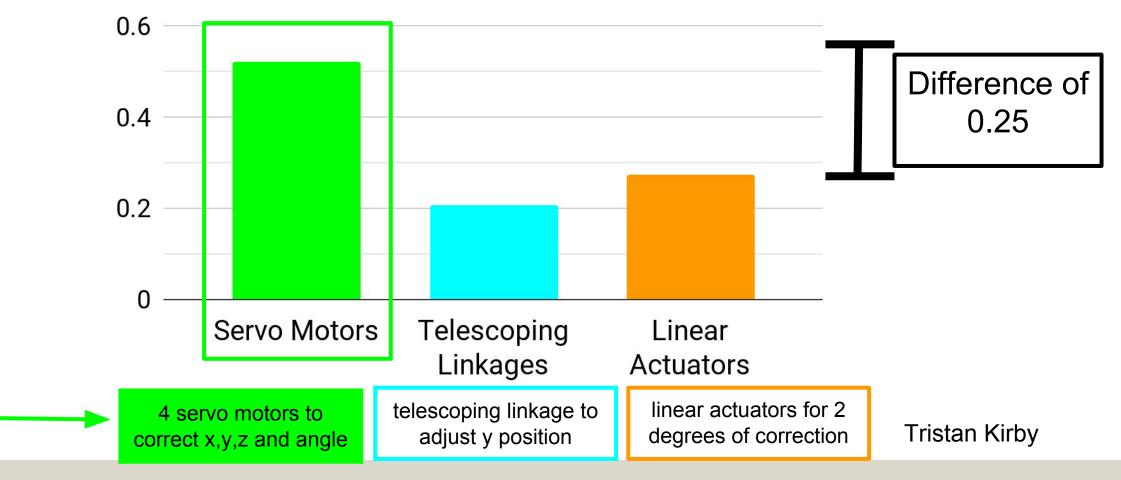
Concept Selection: Process

 House of Quality - compare customer requirements with engineering characteristics to find engineering characteristics with the highest weight



- Analytical Hierarchy Process compare rating of each concept to each engineering characteristic to determine most effective concepts

Concept Selection: Winner


Final Concept Values

Concept Selection: Winner

Final Concept Values

Embodiment

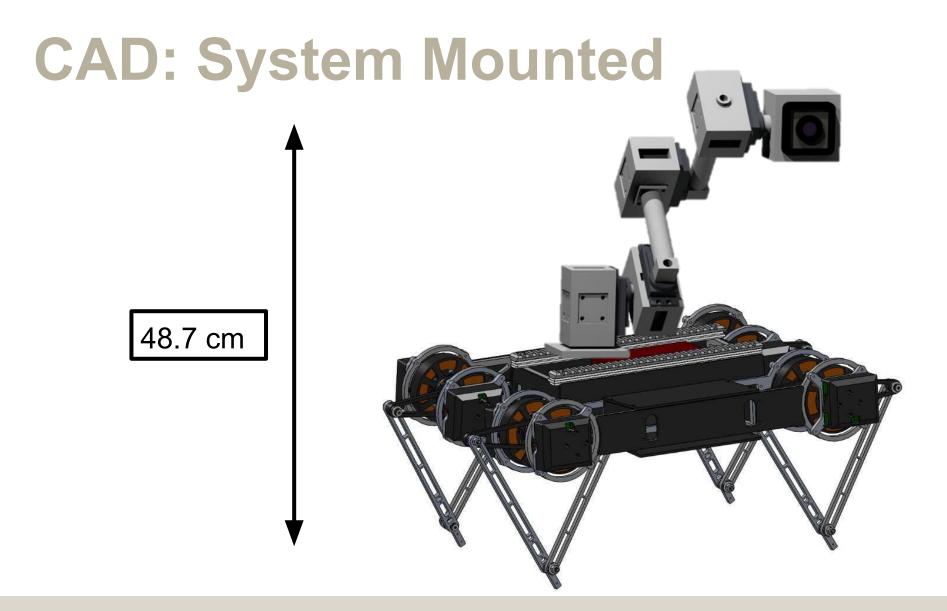
Tristan Kirby

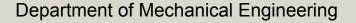
Department of Mechanical Engineering

15

CAD: Minitatur

CAD: Stabilization System

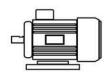

23 cm Fully Extended

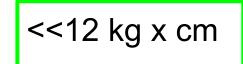

Tristan Kirby

17

Tristan Kirby

16


Design Analysis


- Weight of 1 motor : 55g
- Weight of camera : 73g
- Length of one Linkage: 10 cm
 Weight is negligible
- Motor Stall Torque at 6V: 12kg x cm

Torque = 55g x 10cm + (73g +55g) x 20cm = 3.11kg x cm

Tristan K	ir	by
-----------	----	----

Manufacturing

Anthony Wyrick

Department of Mechanical Engineering

19

3D Print

Figure 1. 3D printed linkages.

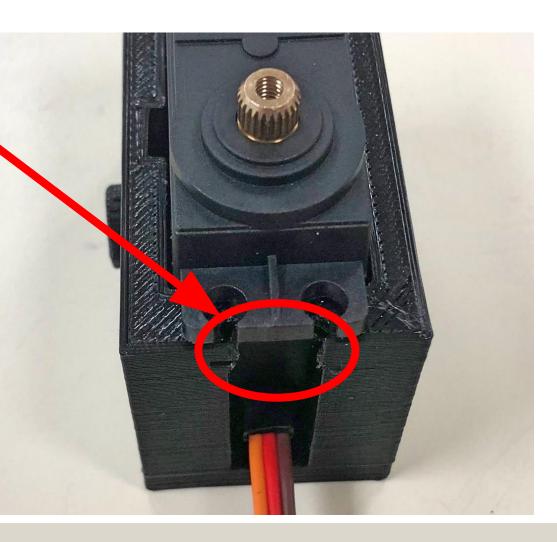
Figure 2. Servo motor in motor in 3D printed motor mount.

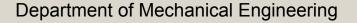
Anthony Wyrick

3D Print

Figure 1. 3D printed linkages.

Figure 2. Servo motor in motor in 3D printed motor mount.


Anthony Wyrick



3D Print

Space for wires cut with knife

Anthony Wyrick

3D Print: Failures

- Tolerances too tight
- Servo motors can't slide into housing because of wiring
- Motor housing walls too thick
- Round tops of linkages difficult to fit into motor mounts

Anthony Wyrick

3D Print

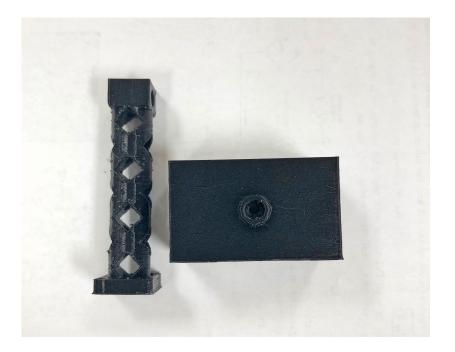


Figure 1. 3D printed linkage and motor mount, round 2.

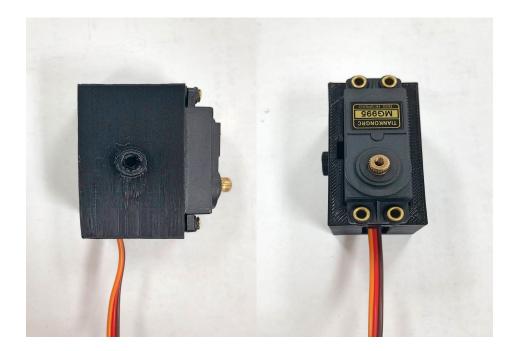


Figure 2. 3D printed motor mount with servo motor, round 2.

Anthony Wyrick

3D Print

- Motor mounts fit
- One of the linkages snapped early in assembly
- The other snapped shortly during attachment
 - Redesign and reprint

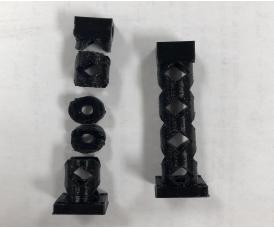


Figure 1. Broken linkage next to non-broken linkage.

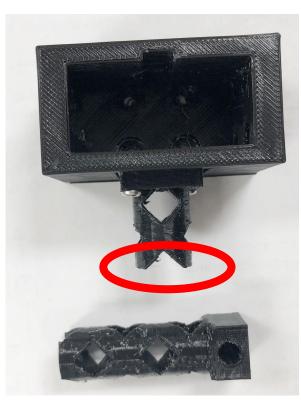
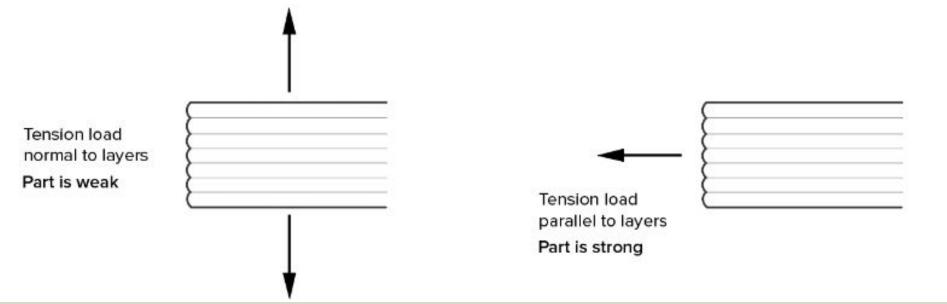
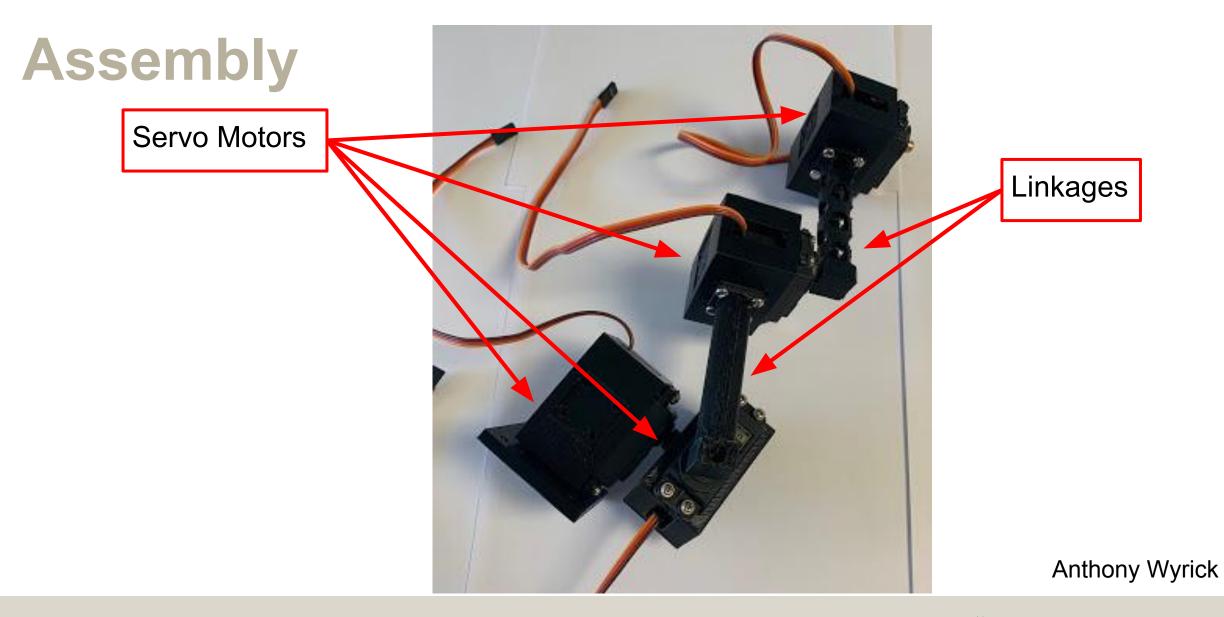


Figure 2. Second broken linkage attached to motor mount.


Anthony Wyrick

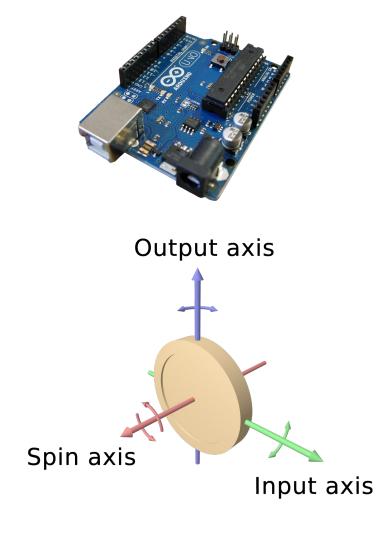
24


3D Print

- Used the same motor mounts from round 2
- Linkages printed as solid parts
 - Also printed in a different orientation

Anthony Wyrick

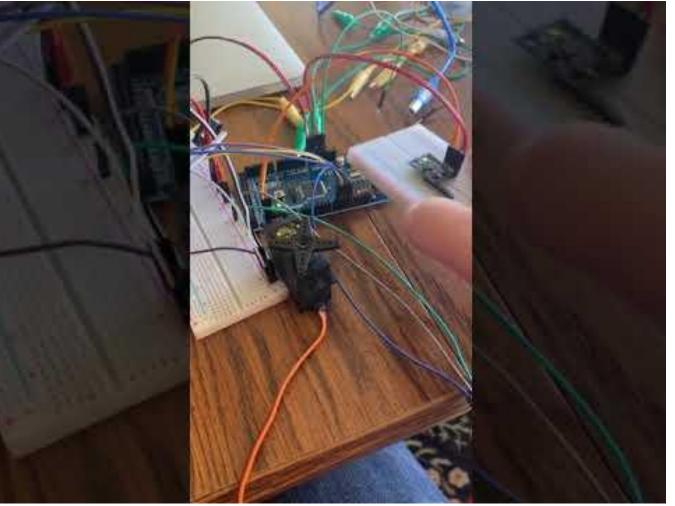
John Bryant



Coding

- Using an Arduino as the microcontroller
- Using gyroscopes to detect motion
- Have the motors responding to gyloscope readings

Spin axis


put axis

John Bryant

Code in Action

John Bryant

Department of Mechanical Engineering

Testing

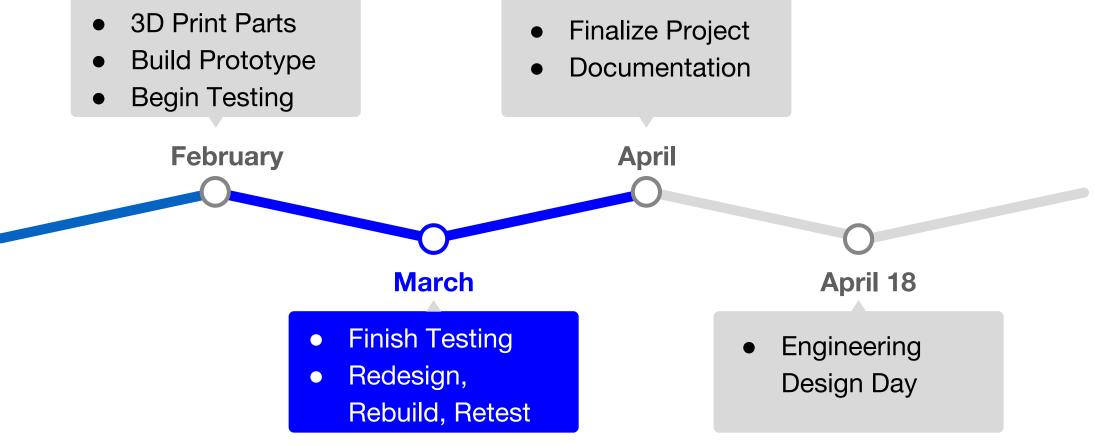
John Bryant

Department of Mechanical Engineering

Testing Method

- Create a cam system that simulates robot motion
- Mount a laser to measure the position change without stabilization system
- Mount the stabilization system with a laser and measure the position change
- Compare data with and without stabilization system

John Bryant


Future Work

Junyi Wang

Department of Mechanical Engineering

Future Work: Timeline

Junyi Wang

Future work summary

- 1. Goals are to improve stability while keeping weight down.
- 2. The background of the project has been completed and a design selected.
- 3. Building of the project is complete. Coding and testing is in progress.
- 4. Future work includes retesting and documentation.
- 5. Engineering design day is on April 18th.

Junyi Wang

Lessons Learned

- Nothing 3D printed ever prints correct the first time
- Square shapes are better for 3D printing than round ones
- Consider wiring in the hardware design

Junyi Wang

Team Introductions

FAMU-FSU College of Engineering

Ariel Mathias Team Lead & Controls Engineer

Junyi Wang Mathematician

John Bryant Programmer

Questions?

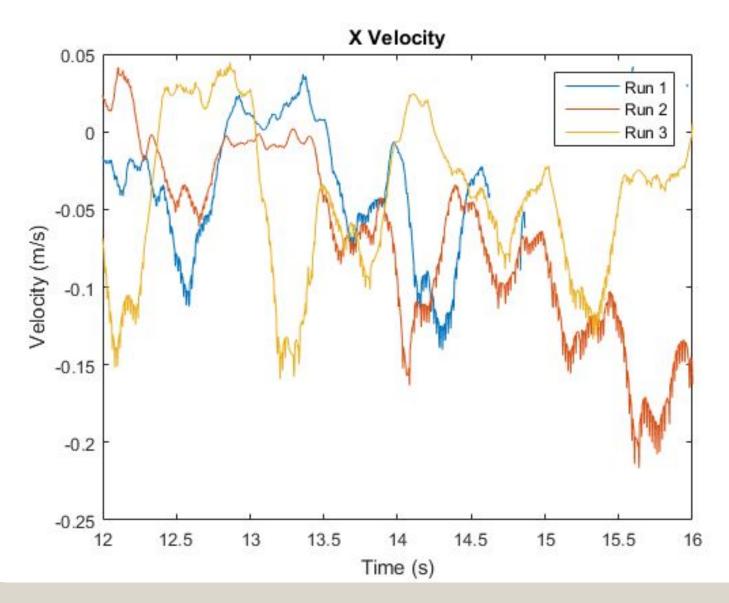
Tristan Kirby CAD Engineer

Anthony Wyrick Systems Engineer

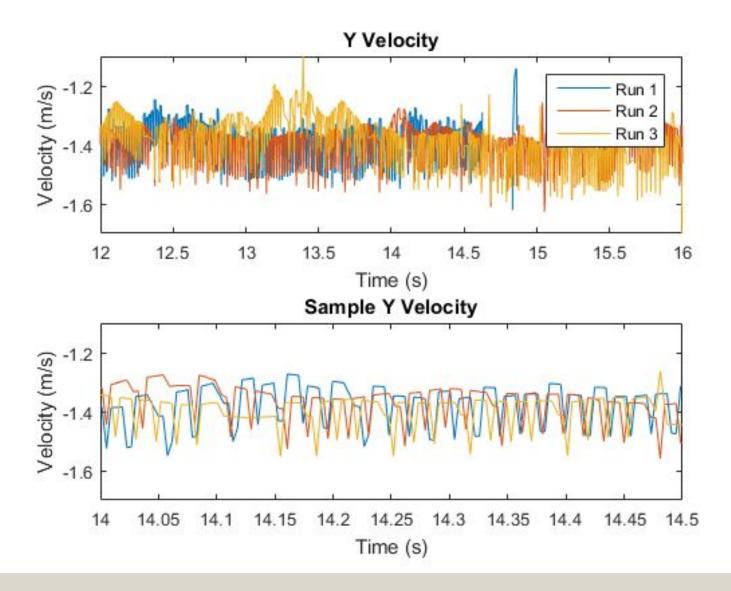
Department of Mechanical Engineering

Backup Slides

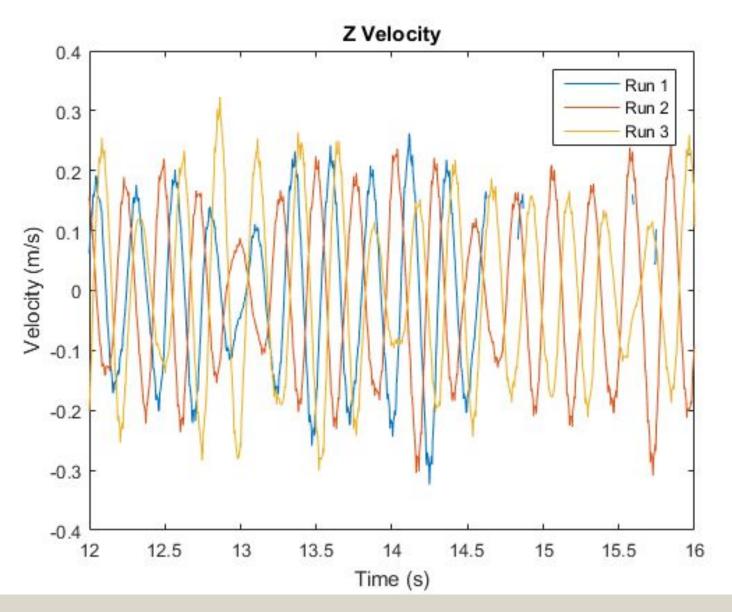
FAMU-FSU Engineering

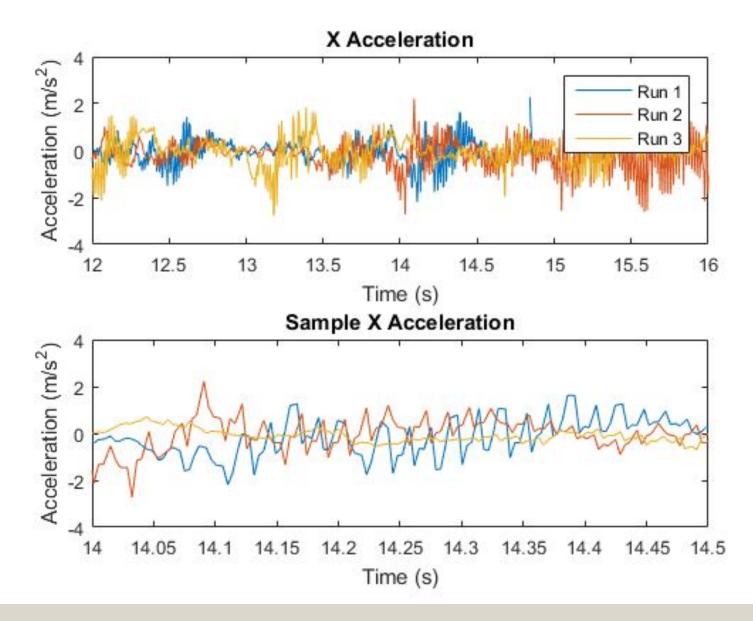

45

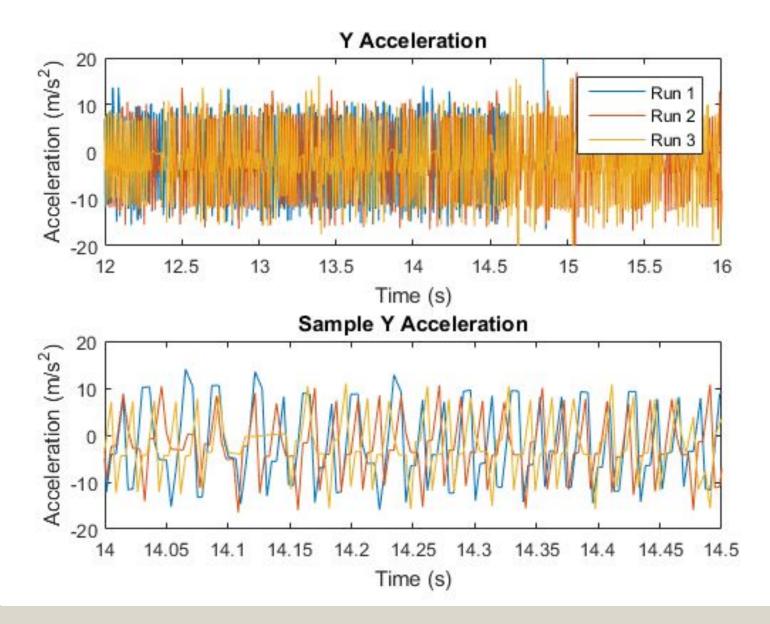
Department of Mechanical Engineering

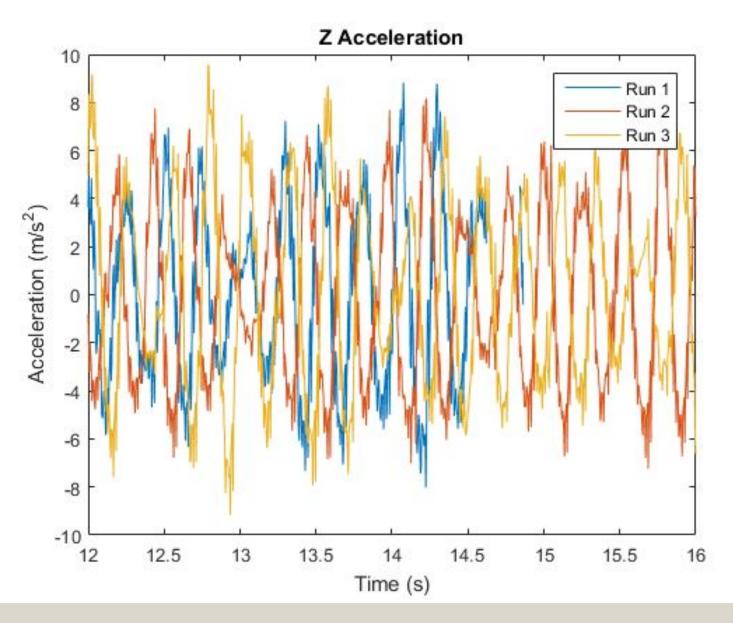

Minitaur Data Backup

Department of Mechanical Engineering






Department of Mechanical Engineering



Project Background Backup

Department of Mechanical Engineering

Active vs. Passive Stabilization

- Active
 - actuators, gyroscopes, and sensors are often involved
 - microcontroller directs singal
 - software involved
 - use of mechatronics to ensure recovery even when there is constant disruption
- Passive
 - needs no energy for stabilization or control power
 - use of a countermass and springs
 - simple but require that disruptions are absent long enough for a full recovery

Gyros and Logic Systems

- Gyros
 - Vibrating masses are set about a specific axis. When any change in angular motion occurs the mass has a tendency to resist the change, in accordance with Newton's laws. The Coriolis moments cause vibration in the plane normal to the original plane. Torque is applied to counteract the change in movement and a voltage proportional to this torque is given as the output.
- Logic
 - Take the readings from the gyroscopes, then output the necessary signal to correct any error in stabilization.

Bio-Inspired Robots

- Imitates biology and works on biological characteristics
- Can be used an environmental monitoring task
- Humanoid robots are being developed to make-up aspects of the labor force and solve social problems
- Integration of artificial intelligence
- Examples: Spot Mini, Atlas

"Biorobotics: When Robots Imitate Nature." *4ime Rvolution*, 26 Dec. 2014, <u>www.4erevolution.com/en/biorobotique/</u>.

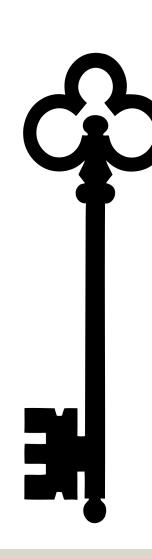
Bonakdarpour B., Kulkarni S.S. (2011) Active Stabilization. In: Défago X., Petit F., Villain V. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2011. Lecture Notes in Computer Science, vol 6976. Springer, Berlin, Heidelberg

Collins, S. H., Wisse, M., & Ruina, A. (2001). A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees. *The International Journal of Robotics Research*, *Volume 20* (Issue 7), pp. 607-615.

Home. (n.d.). Retrieved from <u>https://dod.defense.gov/</u>

Ljung, P. B. (n.d.). US4884446A - Solid state vibrating gyro. Retrieved from <u>https://patents.google.com/patent/US4884446A/en</u>

P. (2017, January 08). More Than Human: Scientist is Building Animal-Like Machines to Save Lives. Retrieved from https://futurism.com/2-more-than-human-scientist-is-building-animal-like-machines-to-save-lives


Sensors for Automation & Control | Banner. (n.d.). Retrieved from https://www.bannerengineering.com/be/en/products/sensors.html

Project Scope Backup

Department of Mechanical Engineering

Key Goals

- Develop a damping system to counteract unwanted motion
- Utilize damping techniques to reduce vibration
- Effectively improve camera and sensor feedback data

Markets

- Bicycle camera footage
- Vehicle camera footage

- Data collection robots
- Law enforcement
 - Dash cams
- Military
 - Weapons
 - Drones

Department of Mechanical Engineering

Assumptions

- Baseline is the Minitaur robot used in research at the Aero-propulsion, Mechatronics, and Energy center
- There will be weight restrictions on the load of the robot

Stakeholders

- Northrop Grumman
 FAMU-FSU College of Engineering
- Dr. Ordonez
 Other research facilities
 - Graduate research students Dr. McConomy

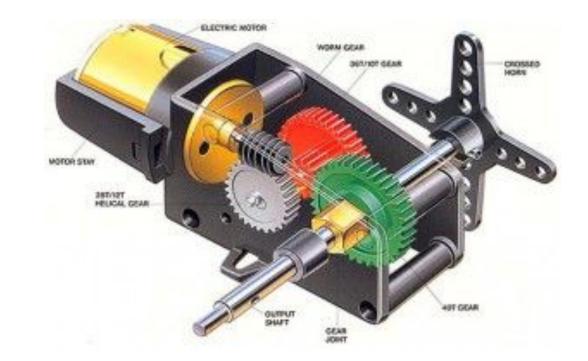
Targets Backup

Department of Mechanical Engineering

Additional Targets

Target	Value	Target	Value3 runs of 10 feet		
Minimum Correction Factor	50%	Stay on Minitaur			
Minimum Motion Detection	1 g	Take Minitaur Impact without	3 runs of 10 feet		
Maximum System Payload 150 grams Weight		Damage			
vveignt		Maximum Weight of System	1.5kg		
Motion Counteraction	5mm <x<150mm at="" at<="" td=""><td></td><td colspan="3"></td></x<150mm>				
	least 1g	Power Requirement	5V		
Operating Temperature Range	60-80 degrees Celsius	System to Robot Movement	50% decrease		
Integrate with Larger System		Correction Speed	0.25 seconds per 60		
	3 runs of 10 feet on Minitaur		degrees		

Concept Generation Backup


Department of Mechanical Engineering

- Connected by brackets and link arms to counteract motion on x, y, and z axis
- Three of the motors would focus solely on counteracting the movements in the specified axises
- Fourth motor controls the angle at which

the payload deviates from the target

Concept 1 Four Servo Motors

Relatively heavy

- Each end has a 3 degree of freedom joint
- Expand and contract vertically,
 removing the bounce of the robots walk
- This idea would be a more simple
- Less complexity also means less weight

• More limited in its effectiveness

Concept 2 A Telescoping Linkage

- One linear actuator corrects one degree of motion on a hinge
- The other corrects the other degree of motion on a hinge
- The entire system can have a flat platform about both hinges for the camera to be attached to
- Weight of this system could be optimized and kept relatively low
- Actuators reaction time would be too slow

Concept Selection Backup

Department of Mechanical Engineering

House Of Quality Engineering Characteristics

- Correction Factor
- Motion Detection
- System Payload Weight
- Motion Counteraction Range
- Operating Temperature

Range

Stay on Minitaur

- Larger System Integration
- Take Miniquat Impact
- System Weight
- Power Requirement
- Feedback Loop
- Correction Speed

House Of Quality Customer Requirements

- Small
- Lightweight
- Improves Stabilization

- Simple
- Cost Effective
- Durable
- Operating Efficiency

Pairwise for Customer Needs

Customer Requirements		2	3	4	5	6	7	Total
1. Small		0	0	0	0	1	1	2
2. Lightweight		~	0	1	0	1	1	4
3. Improves Stabilization		1	~	1	1	1	1	6
4. Simple		0	0	~	0	1	0	3
5. Cost Effective		1	0	1	~	1	1	5
6. Durable		0	0	0	0	~	1	1
7. Operating Efficiency		0	0	1	0	0	~	1
Total		2	0	3	1	5	5	6

House of Quality

						Charac	teristics						
Units		% meters/seconds(squared) grams mm mm Celsius celsius nms x feet nuns x feet nuns x feet volts Volts						%	seconds/degrees				
Requirements	Weight Factor	Correction Factor	Motion Detection	System Payload Weight	Motion Counteraction Range	Operating Temperature Range	Larger System Integration	Stay on Minitaur	Take Minitaur Impact	System Weight	Power Requirement	Feedback Loop	Correction Speed
1. Small	2	1		9	1		3	1		9	9		3
Lightweight	4			9			3	1	1	9	3		3
Improves Stabilization	6	9	9		3						3	3	3
4. Simple	3			3			1		1	3	3		1
 Cost Effective	5	3	3	3	1	1			1	3	3		3
Durable	1			3		9		1	9	3	3		3
7. Operating Efficiency	1	1	1	3	3					1	9	1	3
 Raw Score (560) 72 70 82 28 14 21 7 21 82 84						19	60						
 Relative Weight		0.129	0.125	0.146	0.05	0.025	0.038	0.013	0.038	0.146	0.15	0.034	0.107
Rank Order		4	5	2	7	11	8	12	8	2	1	10	6

AHP Critical Comparison Matrix

	Criteria Comparison Matrix							
Selection Criteria	Power Requirement	System Weight	System Payload Weight	Correction Factor	Sum			
Power Requirement	1	0.143	0.333	0.111	1.587			
System Weight	7	1	5	0.143	13.143			
System Payload Weight	3	0.2	1	0.111	4.311			
Correction Factor	9	7	9	1	26			

AHP Pairwise Comparison Matrix

	System Weight		
	Concept 1	Concept 2	Concept 3
Concept 1	1	1	3
Concept 2	1	1	3
Concept 3	0.33	0.33	1
Sum	2.33	2.33	7
	Power Requireme	nt	
	Concept 1	Concept 2	Concept 3
Concept 1	1	3	3
Concept 2	0.33	1	1
Concept 3	0.33	1	1
Sum	1.66	5	5

AHP Pairwise Comparison Matrix

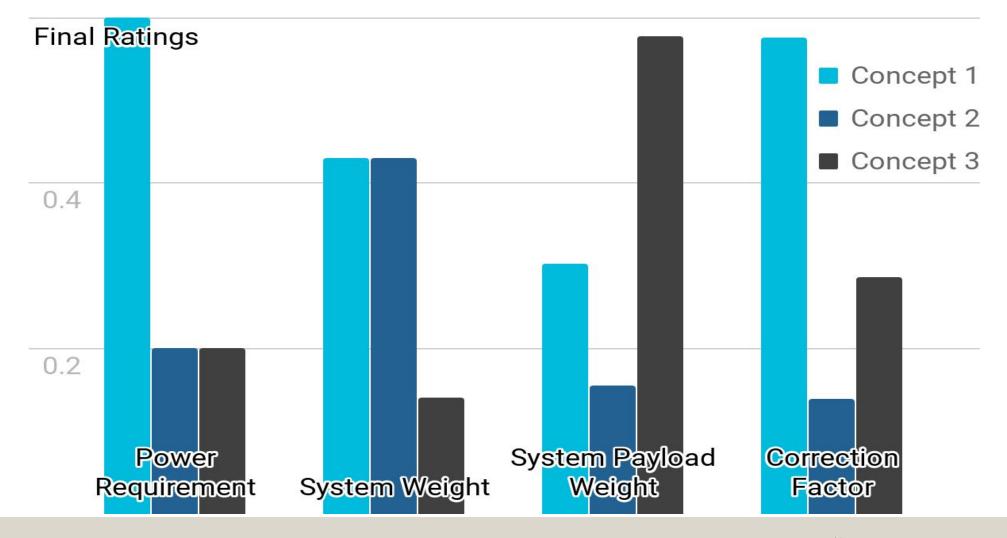
Correction Factors									
	Concept 1	Concept 2	Concept 3						
Concept 1	1	3	3						
Concept 2	0.33	1	0.33						
Concept 3	0.33	3	1						
Sum	1.66	7	4.33						

System Payload Weight								
	Concept 1	Concept 2	Concept 3					
Concept 1	1	3	0.33					
Concept 2	0.33	1	0.33					
Concept 3	3	3	1					
Sum	4.33	7	1.66					

AHP Normalized Comparison Matrix

Power Requirement										
	Concept 1	Concept 2	Concept 3	Pi						
Concept 1	0.6	0.6	0.6	0.6						
Concept 2	0.2	0.2	0.2	0.2						
Concept 3	0.2	0.2	0.2	0.2						
Sum	1	1	1							

System Weight									
	Concept 1	Concept 2	Concept 3	Pi					
Concept 1	0.43	0.43	0.43	0.43					
Concept 2	0.43	0.43	0.43	0.43					
Concept 3	0.14	0.14	0.14	0.14					
Sum	1	1	1						


AHP Normalized Comparison Matrix

Correction Factor										
	Concept 1	Concept 2	Concept 3	Pi						
Concept 1	0.602	0.429	0.693	0.575						
Concept 2	0.199	0.143	0.076	0.139						
Concept 3	0.199	0.429	0.231	0.286						
Sum	1	1.001	1							

System Payload Weight										
	Concept 1	Concept 2	Concept 3	Pi						
Concept 1	0.23	0.43	0.248	0.303						
Concept 2	0.08	0.14	0.248	0.156						
Concept 3	0.7	0.43	0.602	0.577						
Sum	1.01	1	1.098							

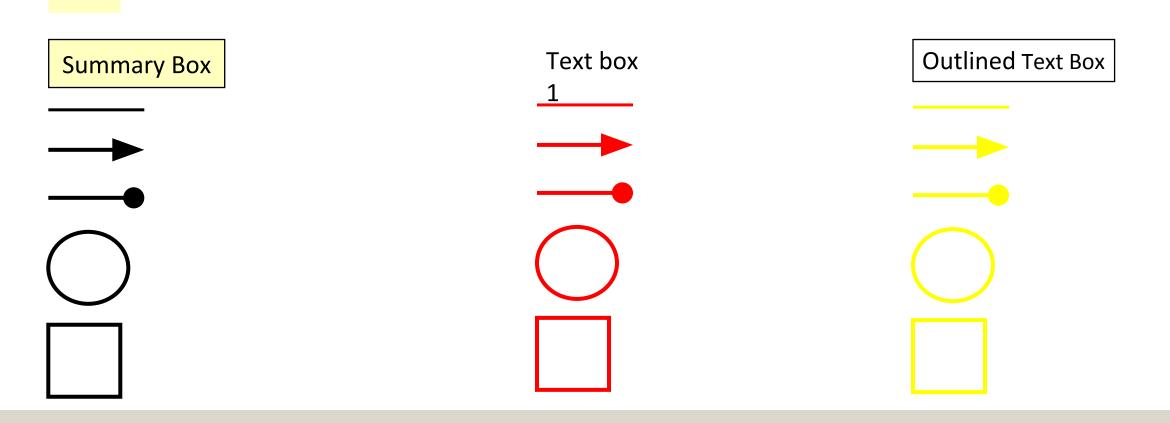
Alternative Value 0.4 0.2 Concept 1 Concept 2 Concept 3

Future Work Backup

Department of Mechanical Engineering

Gantt Chart

Task Name	Start Date	End Date	Duration	Predecessors	% Complete	Status	Assigned To
Classes Begin	01/07/19	01/07/19	1d		0%	Not Started	
Detail Design (CAD)	01/07/19	01/11/19	5d		10%	In Progress	Tristan
Design Review	01/14/19	01/15/19	2d	2	0%	Not Started	Team
Order Materials	01/16/19	01/16/19	1d	3	0%	Not Started	Anthony
Parts Arrive	01/17/19	01/25/19	7d	4	0%	Not Started	Anthony
3D Print Parts	01/29/19	01/30/19	2d	5FS +1d	0%	Not Started	Z John
Build Testing Rig	02/04/19	02/15/19	10d	6FS +2d	0%	Not Started	Anthony
Build Stabilization System Prototype	02/04/19	02/15/19	10d	6FS +2d, 7FF	0%	Not Started	Junyi 🕖
Testing	02/19/19	03/04/19	10d	7FS +1d, 8FS +1d	0%	Not Started	Team



Redesign	03/05/19	03/06/19	2d	9	0%	Not Started	Team
Rebuild	03/07/19	03/13/19	5d	10	0%	Not Started	🗾 John
Retest	03/14/19	03/15/19	2d	11	0%	Not Started	Team
Spring Break	03/18/19	03/22/19	5d	12	0%	Not Started	Team
Retest	03/25/19	03/29/19	5d	13	0%	Not Started	🕕 Tristan
Project Finalization	04/01/19	04/09/19	7d	14	0%	Not Started	Team
Documentation	04/10/19	04/17/19	6d	15	0%	Not Started	🔥 Ariel Ma
Engineering Design Day	04/18/19	04/18/19	1d	16	0%	Not Started	Team
Finals	04/29/19	05/03/19	5d		0%	Not Started	Team
Graduation	05/04/19	05/04/19	1d		0%	Not Started	Team

Standard Shapes

Approved Logos

FAMU-FSU

College of FAMU-FSU Engineering Engineering


FAMU-FSU College of Engineering

FAMU-FSU

Engineering

Color Palette

Department of Mechanical Engineering

APA Tables

Category 1	Category 2	Category 3	Category 4	Category 5
ltem 1				
Item 2				
Item 3				
Item 4				

	Category 2		Category 3	
Category 1	subcategory 1	subcategory 2	subcategory 1	subcategory 2
ltem 1				
Item 2				
Item 3				
Item 4				

