NORTHROP GRUMMAN

Drone Disabling Device Virtual Design Review 4

Ryan Cziko Quentin Lewis Dylan Macaulay Trevor Stade Taylor Stamm

Team 518

1

Trevor Stade

Project Manager

Mechanical Engineering Quentin Lewis

Sensor Interface Engineer

Computer Engineering Ryan Cziko

Test Engineer

Mechanical Engineering **Taylor Stamm**

Systems Integration Engineer

Electrical Engineering **Dylan Macaulay**

Design Engineer

Mechanical Engineering

MECHANICAL ENGINEERING

FAMU-FSU Engineering

2

Develop a device to secure specified air space from unmanned flight vehicles. There needs to be an improvement upon functionality, size, and overall use.

Key Goals

- Improve speed and accuracy of drone-detecting functionality
- Reduce size of drone disabling apparatus to the size of a rifle
- Increase range of device functionality to a 50 ft dome
- Adhere to all safety, legal, and environmental regulations

Project Scope

Stakeholders

Tameika Hollis

• Executive at Northrop Grumman

Shayne McConomy

- Senior Design Professor; FAMU-FSU College of Engineering Jonathan Clark
 - Associate Professor; FAMU-FSU College of Engineering

Intended Markets

• Primary Market:

- Government
- Military operatives
- Law Enforcement

• Secondary Market:

- Contractors,
- Private security
- Defense companies

Assumptions

• Device primarily used in defense and security operations

• Not intended for civilian use

• Intended target is unauthorized civilian drones

Ryan Cziko

Targets

Target Values								
Target No.	Need	Metric	Importance	Units	Marginal Value	Ideal Value		
1	2, 10	Assembly & Disassembly Time	5	min	60	5		
2	10	Weight of Device	5	lbs	30	10		
3	4,5,10	Disabling Range	3	ft3	30	50		
4	10	Target Acquisition Speed	4	s	20	5		
5	10	Battery Life	3	h	2	3		
6	3,5,10	Frequencies Jammed	3	GHz	2.4	2.4 and 5		
7	2,10	Device reload speed	1	min	5	2		
8	10	Target max drone wingspan	3	in	25	30		
9	10	Target max drone Weight	3	lbs	4	6		
10	1-9	Project Cost	5	\$	5000	2500		

Highlighted Device Targets

Metric	Marginal Value	Ideal Value	Units
Assembly & Disassembly Time	60	5	Minutes
Weight of Device	30	10	Lbs
Project Cost	5000	2500	\$
Target Acquisition Speed	20	5	Seconds

Design Progress

Taylor Stamm

Detection System

Overview

- Array of video cameras used for 360 degree field of view
- Distinguishes between drone and other flying objects
- Provides general location of detected drone
- Live video feed with detection boxes on computer system

Bird (Safe)

Drone (Threat)

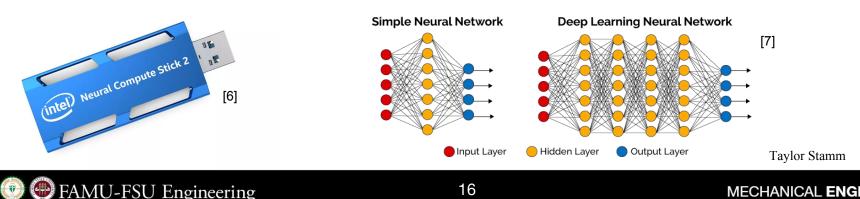
Figure x: Video Detection of Drone and Bird [x]

Figure x: SJCAM SJ4000 Action Camera [x]

Taylor Stamm

Detection System - Old Design

Taylor Stamm


Detection System - Old Design Issues

- Substantially low frame rate: Only about 0.5 fps
- Inaccurate object detection
- Slow detection
- Need optimized training algorithm
- Need more advanced deep learning hardware

Taylor Stamm

Detection System - Proposed Improvements

- Install Intel Neural Compute Stick 2 to Raspberry Pi
 - Substantial increase in deep learning processing speed 0
- "Train" object detection through a Neural Network
- Create Python/Matlab script to graph and process testing
- Expected frame rate increase of up to 56x greater!
- Expected processing speed increase of up to 56x greater!

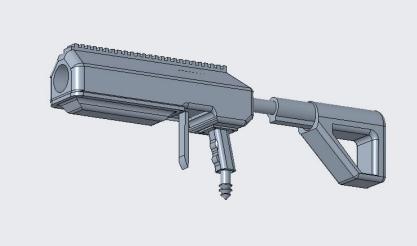
Detection System - Example of Detection

Taylor Stamm

[8]

Net Launcher and Backpack

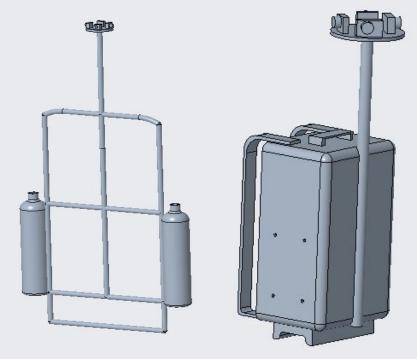
Overview


Net Launcher:

- Launch net 50ft and capture a stationary drone.
- Allow easy addition of a frequency jammer. Backpack
 - Support detection system, compressed air, and computer components with minimal hindrance to wearer.

Trevor Stade

Improvements: Net Launcher


- Slimmed down design
- Mounting rail for frequency jammer
- Single barrel firing method

Trevor Stade

Improvements: Backpack

- Detection System mounted to backpack
- Compressed air can mounted to side of backpack

Trevor Stade

References

[1] SDT13. (2018) - Senior Design Team 13 year 2018; Concept prototype of drone disabling device. [digital Image]. Retrieved from https://ww2.eng.famu.fsu.edu/me/senior_design/2018/team13/docs_pdfs/Design_Review2.pdf

[2] NA. (2018, January 23). - Mavic Air for limitless exploration. [digital Image]. Retrieved from <u>https://forum.dji.com/thread-130833-1-1.html</u>

[3] https://dronelife.com/wp-content/uploads/2016/05/ANTIDRONE-SYMBOL-232x300.jpg

[4] https://theadventureedge.com/best-cast-net-buyers-guide/

[5] http://www.nelsonpaint.com/pellet-mark.html

[6] https://www.zdnet.com/article/intel-rolls-out-neural-compute-stick-2/

[7] https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351

[8] https://youtu.be/AfNZviiJYaA

Questions?