

Drone Disabling Device Design Review 5

Ryan Cziko Quentin Lewis Dylan Macaulay Trevor Stade Taylor Stamm

Team 518

Team Introductions

Trevor	Stade
--------	-------

Project Manager

Mechanical Engineering

Engineering

Ryan Cziko

Test Engineer

Mechanical Engineering

Taylor Stamm

Engineer

Electrical

Engineering

Systems Integration

Dylan Macaulay

Design Engineer

Mechanical Engineering

Sponsor and Advisor

<u>Sponsor</u> Tameika Hollis *Executive at Northrop Grumman*

Academic Advisor Jonathan Clark, Ph.D. *Professor*

Objective

Develop a device to secure specified air space from unmanned flight vehicles. There needs to be an improvement upon functionality, size, and overall use.

Project Background

Quentin Lewis

Intended Markets

- Primary Market:
 - Government
 - Military operatives
 - Law Enforcement
- Secondary Market:
 - Contractors
 - Private security
 - Defense companies

- Device primarily used in defense and security operations
- Not intended for civilian use
- Intended target is unauthorized civilian drones

Quentin Lewis

Customer Needs

- Size of drone
 - Recreational or household drones
- Operable time
 - Device should operate until task is completed
- Device outcomes
 - Neutralize, not destroy, drone and if possible recover
- Size of device
 - Device should be portable and easily maneuverable
- Purpose of this project
 - Aid-to-hire and give better understanding of the design process

Quentin Lewis

Basic Device Function

Quentin Lewis

Concept Generation and Selection

- Five detailed concepts generated
 - 1. Paintball style marker that fires substance to disrupt communications between drone and operator.
 - 2. Bazooka style launcher that uses a sonar like detection system.
 - 3. Automated device that is floor mounted and fires net at detected drones.
 - Mobile rifle with detection system and operator pack that fires a net powered by pressurized air or CO₂.
 - 5. Dart rifle that disrupts electronics on drone, uses high tech sight to manually scan airspace for drones.

Quentin Lewis

Shoulder Straps Connection

Embodiment

Dylan Macaulay

Detection System

- Raspberry Pi Model 3 B+
 - Runs the detection algorithm
 - Powers the cameras
- Intel Neural Compute Stick 2
 - Dedicated processor designed for neural networks
 - Increases processing speed by 56x
- SJCAM SJ4000 Cameras (3, mounted)
 - Provides 360° detection coverage
- 30,000 mAh USB Power Bank
 - Powers the Raspberry Pi

Air System

- Pro Grade 12 ounce CO₂ tank
 - Standard ⁵/₈-18 UNF thread size
 - Seamless, high strength aluminum alloy 6061-T6
 - Service pressure of 1800 psi
- High Output Regulator
 - 4500 psi air tank regulator with output pressure of 850 psi
 - Displays amount of gas inside tank
 - Lightweight and easily rebuildable
- Heavy Duty Coiled remote line
 - Quick disconnect to easily attach and detach remote line
 - \circ Works with up to 3000 psi of CO₂ and 4500 of HPA
 - Allows for mobility when handling device

Net Launcher and Backpack

Overview

Net Launcher:

- Launch net 50ft and capture a stationary drone.
- Allow easy addition of a frequency jammer. Backpack
 - Support detection system, compressed air, and computer components with minimal hindrance to wearer.

Net Launcher

- Addition of extended barrel
 - Extension of 8 inches or greater to increase net velocity
 - Barrel to be machined and honed here on campus
- Testing and designs for "net cap"
 - Net attached to cap that is used for launch
 - Modeled after horn of casting net

Engineering

Backpack

- Molle II Rucksack Frame and Shoulder straps
 - Durable and built to last a lifetime
 - Frame is lightweight and molds to back for comfort
 - Shoulder straps add comfort and weight distribution
- Air tank and various pouches/packs can be attached using Molle straps

Future Work

- Image training for Raspberry Pi and Intel Compute Stick 2
- Assembly of pressure systems
- Testing launch of cap and comparisons of computed values
- Finalize drawings for components to be machined
- Final orders of missing parts
- Testing and adjustments to prototype

References

[1] SDT13. (2018) - Senior Design Team 13 year 2018; Concept prototype of drone disabling device. [digital Image]. Retrieved from <u>https://ww2.eng.famu.fsu.edu/me/senior_design/2018/team13/docs_pdfs/Design_Review2.pdf</u>

[2] NA. (2018, January 23). - Mavic Air for limitless exploration. [digital Image]. Retrieved from <u>https://forum.dji.com/thread-130833-1-1.html</u>

[3] http://hyperphysics.phy-astr.gsu.edu/hbase/pber.html

[4] https://www.princeton.edu/~asmits/Bicycle_web/Bernoulli.html

[5] https://www.engineeringtoolbox.com/colebrook-equation-d_1031.html

[6] https://www.zdnet.com/article/intel-rolls-out-neural-compute-stick-2/

[7] https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351

[8] https://www.amazon.com/gp/product/B00CHSR1C8/ref=ppx_yo_dt_b_asin_title_o00__o00_s00?ie=UTF8&psc=1

Questions?

Department of Mechanical Engineering

Backup Slides

Department of Mechanical Engineering

Customer Needs Backup

Department of Mechanical Engineering

Customer Needs

What is the size and type of drone to be neutralized?

• Recreational drones that could be carrying IEDs or have cameras.

How long does this device need to be operable for?

• The device should be operable for the time necessary until the user powers it off.

What is the outcome of the neutralized drone?

• We are looking to just neutralize the drone given the time constraints, but if possible, recover the drone if it is not completely destroyed.

Is the device expected to be autonomous?

• No, due to time constraints it will most likely not be possible; but ideally that is what we would want.

Is there a specific range that the device must function within?

 100 feet in radius, 100 feet altitude.
 Constraints may need to be adjusted due to not being possible to meet.

Does this device need to be portable?

• Yes, must be able to assemble the device within 4 hours.

What is the purpose of Northrop Grumman sponsoring this project?

 To aid-to-hire and give students an understanding of the learning process. Northrop Grumman is not looking for a proof of concept to scale.

Functional Decomp Backup

Department of Mechanical Engineering

Department of Mechanical Engineering

Targets Backup

Department of Mechanical Engineering

	Target Values											
Target No.	Need	Metric	Importance	Units	Marginal Value	Ideal Value						
1	2, 10	Assembly & Disassembly Time	5	min	60	5						
2	10	Weight of Device	5	lbs	30	10						
3	4,5,10	Disabling Range	3	ft3	30	50						
4	10	Target Acquisition Speed	4	S	20	5						
5	10	Battery Life	3	h	2	3						
6	3,5,10	Frequencies Jammed	3	GHz	2.4	2.4 and 5						
7	2,10	Device reload speed	1	min	5	2						
8	10	Target max drone wingspan	3	in	25	30						
9	10	Target max drone Weight	3	lbs	4	6						
10	1-9	Project Cost	5	\$	2000	1500						

Concept Selection Backup

Department of Mechanical Engineering

HOQ

- Importance for customer requirements was determined through pairwise comparison
- Improvement direction for our design evaluated for each engineering characteristic
- Correlation of customer requirements and engineering characteristics shown
- From HOQ, top engineering characteristics selected

			Engineering Characteristics								
Improvement Direction	↓	\downarrow	1	Ļ	↑	↑	↓	↑	↑	↓	
Units		Mins	sq	Ħ	Sec	Ţ	Ghz	Sec	Ē	sq	ω
Customer Requirements	Importance	Assembly/Disassembly Time	Weight of Device	Disabling Range	Target Acquisition Speed	Battery Life	Frequencies Jammed	Device Reload Speed	Target Max Drone Wingspan	Target max drone weight	Project Cost
Automatic Detection System	6		3		9	9			9		9
Device reach	4		3	9		1		3	1		1
Neutralization of Drone (undamaged)	5			9	9	3	9		3	3	
Device Safety	5	2	3								1
Retrieval of Drone	2			1					3	9	
Device Mobility	3		9								
Length of Operation	2			1		9	9				3
Ease of use	1	9	3					9			
Raw Score		9	75	85	99	91	63	21	79	33	69
Relative Weight %		1%	12%	14%	16%	15%	10%	3%	13%	5%	11%
Rank Order		10	5	3	1	2	7	9	4	8	6

Pugh Matrix

Selection Criteria	DroneGun	Concept 1	Concept 2	Concept 3	Concept 4	Concept 5
Target Acquisition Speed		S			S	
Battery Life		+	+	S	+	+
Disabling Range		140 1) 1	-	2 I	<u>.</u>
Target Max Drone Wingspan	E	S	S	S	S	S
Weight of Device	atur	+	9	+	2	+
Frequencies Jammed	-	S	S	S	S	S
	-		2 0 0			
# pluses		2	1	1	1	2
# minuses		1	3	2	2	2

Selection Criteria	Concept 5	1	2	3	4
Target Acquisition Speed		S	+	22	+
Battery Life				345	+
Disabling Range		34	S	345	+
Target Max Drone Wingspan	E	S	S	S	S
Weight of Device	atu	S		545	
Frequencies Jammed	<u> </u>	+	+	+	S
# oluços		1	2	1	3
# pluses			2		3
# minuses		2	2	4	1

AHP

- Through the Analytical Hierarchy Process (AHP) Concept 4 was selected
- AHP was done for each criteria and each concept
- Final rating matrix shows Concept 4 with highest Alternative Value

Developem	ent of Candidate set of Crite	ria weights {W} for Drone Disa	abling Device
	Criteria Com	parison Matrix [C]	
	Disabling Range	Weight of Device	Battery Life
Disabling Range	1	0.333333333	0.2
Weight of Device	3	1	0.3333333333
Battery Life	5	3	1
Sum	9	4.333333333	1.533333333

Final Rating Matrix											
Selection Criteria	Disabling Range	Weight of Device	Battery Life	Alternative Value							
Concept 2	0.807001694	0.7513804714	0.2594645115	0.3319							
Concept 4	0.08965430705	0.1679461279	0.06543515311	0.3473							
Concept 5	0.303343999	0.08067340067	0.6751003354	0.3076							

Detailed Math Backup

Department of Mechanical Engineering

CO₂ Calculations

- Used Bernoulli's equation (1) twice to find the velocity of CO2 as it leaves the barrel of the gun.
 - First stage is from the tank to the nozzle
 - Second stage is from nozzle and through hose to rifle
- Problem then modeled as smooth pipe (Barrel) with turbulent flow
 - **Re** ≈ 151,721
 - Darcy friction factor (2) solved,
 f = 0.016569
- Velocity of net determined to be ≈ 30.414 feet/sec

$$P_1 + \frac{1}{2}\rho V_1^2 + \rho gh_1 = P_2 + \frac{1}{2}\rho V_2^2 + \rho gh_2$$

(1) Bernoulli's equation

(2) Colebrook-White's equation

Department of Mechanical Engineering

Gas Velocity leaving Regulator

• V2 solved by subbing values into bernoulli and rearranging

$$V2 = \sqrt{2(\frac{P1}{\rho 1} - \frac{P2}{\rho 2})}$$

 Velocity leaving nozzle of 12 OZ CO2 tank and high output regulator at 70 deg. Fahrenheit was then found to be 34.108 ft/sec

P1	1800 psi
h1	0 inch
V1	0 ft/sec
Rho1	54.403 lb/ft ³
P2	850 psi
h2	0 inch
V2 (solved)	34.108 ft/sec
Rho2	10.422 lb/ft ³

Gas Velocity through hose to rifle

• V3 found by following previous method and substituting values for the gas to travel from tank to rifle

$$V3 = \sqrt{2(\frac{P2}{\rho^2} - \frac{P3}{\rho^3} + g * (h1 - h2) + \frac{V2}{2})}$$

- Using ¼" diameter hose line and ambient temperature and pressure
- Velocity reaching rifle from hoseline at 70 degrees Fahrenheit found to be 52.356 ft/sec

P2	850 psi
h2	0 inch
V2	34.108 ft/sec
Rho2	10.422 lb/ft ³
P3	14.7 psi
h3	72 inch
V3 (solved)	52.356 ft/sec
Rho3	0.075 lb/ft ³

Velocity of net through barrel

• Relation of barrel length to output velocity used

$$V_{net} = \sqrt{\left(\frac{2}{m} * (Po * Vo) * \ln\left(1 + \left(\frac{A_c * L}{Vo}\right)\right) - f * L\right)}$$

- Mass of 2 lbs, output pressure of 850 psi from nozzle, cross sectional area of 28.26 inch², and a fraction factor of 0.016569 were all used
- Desired barrel length determined to be anything over 8 inches

Length (inch)	Volume (inch ³)	V of net (ft/sec)
2	56.52	15.207
4	113.04	21.506
6	169.56	26.339
8	226.08	30.414
10	282.60	34.004
12	339.12	37.249

Objectives	Major Tasks		Project Completed By: April 01, 2019 Own				Owner / Priority												
0	1 Order and test CO2 tank on current device		~	~														Α	
0	2 Test hose line	an an an an an an S	Section 199	N											A				
0	3 Interface cameras alert system with raspberry pi			~												Α			А
0	4 Create initial drone detection algorithm		85 2000 mm	~											mmm			Α	
0	5 Order casting nets and size specifications			~	~													A	
0	6 Pressure chamber calculations and manufactoring			~	~												Α		
0	7 3D print CAD models					~											A		
0	8 Pressure equipment safety test					~									A				
0	9 Net launch distance test					~									A				
0	10 3D imaging test of stationary drone					~										Α			
0	11 Test trigger assembly with low pressure					~									Α				
0	12 Optimize speed and accuracy of detection algorithm	6					N					- 8		1		Α			
0	13 Assemble trigger system, air tank, hose line, and 3D prints						~										A	В	
0	14 Assemble Rifle components							~									A	В	
0	15 Test pressure chamber for leaks and durability							~							A				
0	16 Combine pressure chamber and designed trigger								~								Α	В	
0	17 Implement casting net to device								~								A	В	
0	18 Full assembly of 3D prints									~							A	В	
0	19 Test and optimize net launch										~	~			A				
0	20 Test optimize detection system		10000055 55								~	~							A
	21 Spring Break												~						
0 0	22 Final system testing													~	A	()	S		
0 0	23 Refine Prototype													~	A	A	A	A	А
	A Syllabus																		
	B ABET																		
	C Sponors																		
	D Documentation																		
	E Lessons Learned		Section 19																
	F																		
	# People working on the project:	5	1	2	3	4	5	6	7	8	9	10	11	12					
	Mains Tasks	/	6	ŋ	ŋ	Ø	Ø	Ø	Ø	Ø	Ø	ŋ	g	σ	9	S	Ň	e	ε
stir atic	Major Tasks	/	4	-	F	F	5	5	5	5	Ξ	Ξ	Ξ	Ξ	NIX	Se	E	ac	E
de Tes			Jai	Jai	Jai	Jai	ē	e	e	e	Ча	Aa	Aa	- a	0	Ĩ	g	S	Ste
o e o	Tai	rget	N.	4	÷.	do	4	1	4	5	4	1	6	5	an	Ę	-Ja	õ	L
tts Un	Da	ates		-	N	N		-	-	N		-	-	2	R	e	Ē	ē	×
																5	la l	F	a a
	Objectives															-	6		

Department of Mechanical Engineering

Department of Mechanical Engineering

Approved Logos

FAMU-FSU

College of FAMU-FSU Engineering Engineering

VIRES ARTES

FAMU-FSU College of Engineering

Department of Mechanical Engineering

FAMU-FSU

Engineering

Color Palette

APA Tables

Category 1	Category 2	Category 3	Category 4	Category 5
ltem 1				
ltem 2				
Item 3				
ltem 4				

	Category 2		Category 3	
Category 1	subcategory 1	subcategory 2	subcategory 1	subcategory 2
ltem 1				
ltem 2				
Item 3				
ltem 4				

