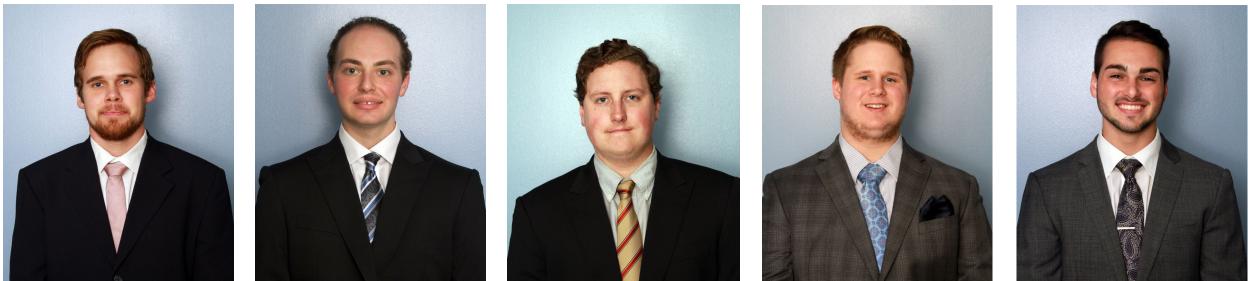


Design Review 4


Mixed Reality Wearable for Body Tracking

31 January 2019

MECHANICAL ENGINEERING

Group Members

Timothy Rubottom Project Manager & System Integration

Joshua Segall Design Engineer

Caleb Pitts Fabrication Engineer

Matthew Bigerton Test Engineer

Josiah Bazyler Mechatronics Engineer

Fall Semester Review

- Anthropometry is the measurement of the size and proportions of the human body
- Anthropometric scans typically output a 3D figure that can be used for body measurements and for Engineering design

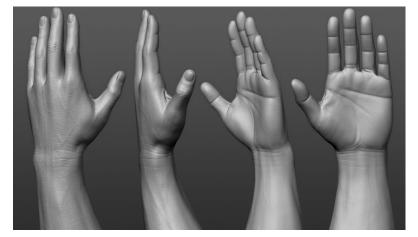


Figure 1: 3D cad image of different hand views

MECHANICAL ENGINEERING

- Currently, scan participants are given verbal instructions on where and how to position and orient themselves for an anthropometric scan
- This process is tedious and time consuming for the scan technician

The objective of this project is to provide a user interface for participants in a 3D scan environment in order to reduce the amount of instructions given by the scan technician to position/orient the participant and to shorten the duration of this process.

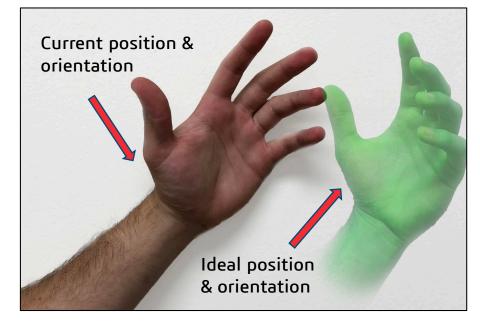


Figure 2: Physical representation of the project objective

Customer Needs Review

Table 1: Customer needs table

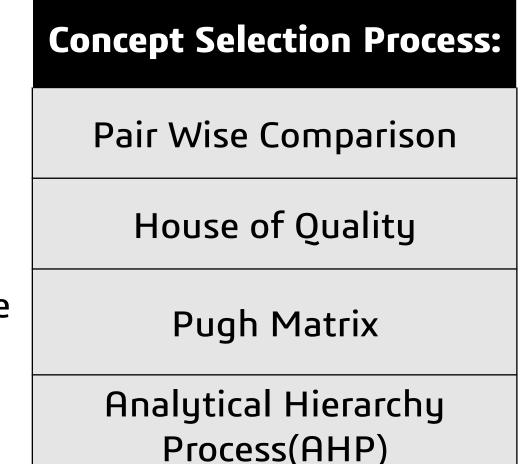
#	CUSTOMER STATEMENTS	INTEPRETED NEED
1	It would be beneficial if the device could indicate to the user when the "sweet spot" is filled	If possible, the device will be able to notify the user to hold the current orientation of the participant's head/hand
2	The device must not interfere with the scanner	The device must cease operating upon successful fulfillment of the ideal pose
3	Project something into space for the participant to aim their head/hand	The device must indicate to the participant the ideal location and orientation for accurate scans
4	The device must be a stand-alone system	The device must complete its intended function without the assistance of other devices
5	The device must be able to be powered remotely	The device requires a method for power control
6	The device must not create any safety hazards	The device must minimally impact the participant

Presented by: Matthew Bigerton

Targets & Metrics Summary

- > The device will:
 - be self-contained
 - not interfere with scanner
 - be safe for participant
 - indicate to the user to hold ideal pose when he/she is in the correct position and orientation

Table 2: Important targets & metrics


Mixed Reality Wearable For Body Tracking				
Main Functions	Sub-Functions	<u>Metrics</u>	<u>Targets</u>	
	Self-Contained	Dimensions (in)	≤ 30 x 30 x 30	
Device		Weight (lbs)	≤ 25	
	Free of Interfernece	Distance From Scanner (m)	~ 1	
Safety	Safe For Participant	Brightness Level (Lumens)	≤ 200	
Visual Indication	Signals Participant to Hold Position	Time in designated location and Orientation (Seconds)	< 30	

Presented by: Matthew Bigerton

Concept Selection: Overview

- House of Quality compares Customer Characteristics vs Engineering Characteristics
- Pair Wise Comparison evaluated the importance of each Customer Requirements
- Pugh Matrix was used to compare concepts
- AHP was used as a consistency check after selection

Table 3: Concept selection table

8 Original Final Design Contenders

Table 4: List of 8 original final design concepts

Final Design Concepts		
AR and Leap Motion		
Mirage/Schlieren Imaging		
BMW Holo-Touch		
3D Image Live Feed Camera		
Cast of Hand/Head		
Adafruit with 3D Camera		
Illumination Mirascope		
Semi-Automatic Robot with 3D Camera		

Original Final Concept Selection: AHP

Concept Selection Process:

AHP

- The final concept was determined using multiple pair wise comparisons for each engineering characteristic
- The output is the weighted number ranking of the final 3 selections

Table 5: Analytical Hierarchy Process

pi					
SELECTION:	Semi-Automatic Robot w/ 3D Camera	Adafruit w/ 3D Camera	3D Image Live Feed Camera		
Design Volume	0.11	0.26	0.63		
Weight	0.09	0.45	0.45		
Distance from Scanner	0.23	0.32	0.45		
Tolerance of Depth Measurement	0.57	0.29	0.14		
Brightness Level/Intesity Level	0.60	0.20	0.20		
Operationg Temperature:	0.60	0.20	0.20		
Resolution	0.60	0.20	0.20		
Operating Time	0.14	0.43	0.43		
SUM	2.94	2.35	2.71		

Table 6: Final Selection

FINAL CONCEPT WEIGHT		
Semi-Automatic Robot w/ 3D Camera	0.40	
Adafruit w/ 3D Camera	0.28	
3D Image Live Feed Camera	0.32	

Presented by: Timothy Rubottom

- Upon further discussion with a Senior Design TA, Team Adviser and Sponsor, we determined that a better concept existed
- As a team, the decision was made to move away from our initial selected concept and moved towards a mixed reality design

New Design: Mixed Reality Wearable

Design Components

- > 3D dual lens camera
- Wearable device
- Processor
- Steady state monitor

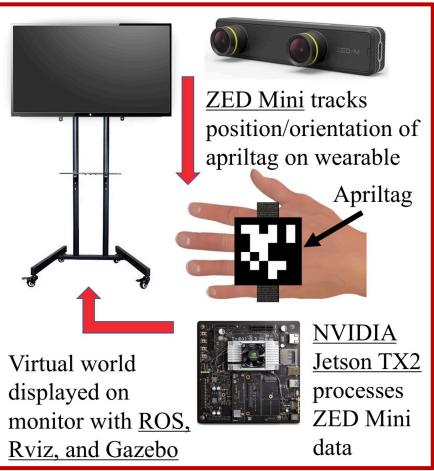


Figure 3: Chronological layout of new design

Presented by: Timothy Rubottom

Mixed Reality Wearable: Camera

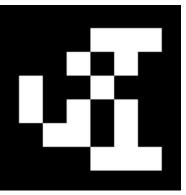
<u>3D dual lens camera</u>

- ZED Mini stereoscopic camera (\$449)
- Outputs 3D HD live feed video
- Will be utilized to track the pose of the AprilTag(s) in real-time

Figure 4: Picture of ZED Mini

MECHANICAL ENGINEERING

Mixed Reality Wearable: Wearable Design


Wearable Device

- We will be designing a wearable device in house
- The design will incorporate AprilTag(s) to track the pose of the user

QR codes have a high pixel density

AprilTags have a low pixel density

*Scan this QR code for an example of AprilTag tracking

> Figure 5: Comparison between QR codes and AprilTags

> > Presented by: Caleb Pitts

Mixed Reality Wearable: Computer

<u>Computer</u>

- NVIDIA Jetson TX2
 (\$299 with educational discount)
- Optimized for processing ZED Mini point cloud data (dense 3D data)

Figure 6: Picture of NVIDIA Jetson TX2

Mixed Reality Wearable: Monitor and Computing

Steady State Monitor

- > TV or Computer monitor
- Used to output the processed visual data

Computing Software

- ROS Robot Operating System
- RVIZ used to visualize the exports of the ROS code
- Gazebo efficiently simulates
 code from ROS

Spring Semester

- Ordering was accomplished over winter break
- NVIDIA Jetston TX2 and
 ZED Mini arrived on January
 11, 2019
- We have acquired a used monitor, computer mouse, and keyboard for use with the NVIDIA Jetson TX2 and the ZED Mini

January 2019

- Fabricate an AprilTag wearable & a protective covering for the NVIDIA Jetson TX2
- Represent the AprilTag's pose as a 3D image of a hand in a virtual world (Rviz/Gazebo)
- Create a translucent 3D image of a hand in the ideal pose within a virtual world
- Develop the team's website
- Work on DR5

Questions?

Presented by: Caleb Pitts

