

Team 523: Mixed Reality Wearable for 3D Body Tracking

FAMU-FSU College of Engineering

Team Introductions

Timothy Rubottom *Project Manager & System Integration*

Joshua Segall Design Engineer

Caleb Pitts Fabrication Engineer

Matthew Bigerton Test Engineer

Josiah Bazyler Mechatronics Engineer

Department of Mechanical Engineering

Sponsor and Advisor

Philanthropic Contributor Yubin Xi, Ph.D. *Human Factors Engineer*

<u>Academic Advisor</u> Shayne McConomy, Ph.D. *SD Professor*

Timothy Rubottom

3

Timothy Rubottom

Project Overview

- Anthropometry is the measurement of the size and proportions of the human body.
- Anthropometric scans typically output a 3D figure that can be used for body measurements and for Engineering design.

Figure 1: 3D CAD Image of Different Hand Views

Project Overview

Figure 2: Measuring of baby's head

Figure 3: Helmet produced by the scan measurement

 \succ Here is an example of a full scan cycle from scan to production.

Project Overview

- Currently, scan participants are given verbal instructions on where and how to position and orient themselves for an anthropometric scan.
- This process is tedious and time consuming for the scan technician.

Figure 4: Example of positioning solutions

Timothy Rubottom

Timothy Rubottom

Objective

The objective of this project is to provide a user interface for a participant in a 3D body scan environment in order to shorten the duration of the overall process by reducing the amount of instructions given by the scan technician to position/orient the participant.

Figure 5: Example of a Visualization

Design Process

Joshua Segall

10

Customer Needs

Joshua Segall

Customer Needs

The device must complete its intended function without the assistance of other devices.

The device requires a method for power control.

The device must minimally impact the participant.

Joshua Segall

Functional Decomp.

- Functional Decomposition acted as a funnel for the ideation process.
- From top to bottom, the boxes become more and more specific.

Joshua Segall

Targets & Metrics

- Functional decomposition led to a large set of targets & metrics (T&M) that was determined to be necessary for a successful design.
- These are the most important T&M from the original list.
 - They satisfy industry/governmental standards.

Table 1: Customer Needs Table

Mixed	Mixed Reality Wearable For Body Tracking					
Main Functions	Sub-Functions	<u>Metrics</u>	<u>Targets</u>			
	Self-Contained	Dimensions (in)	≤ 30 x 30 x 30			
Device		Weight (lbs)	≤ 25			
	Free of Interfernece	Distance From Scanner (m)	~ 1			
Safety	Safe For Participant	Brightness Level (Lumens)	≤ 200			
Visual Indication	Signals Participant to Hold Position	Time in designated location and Orientation (Seconds)	< 30			

Joshua Segall

Concept Generation: Overall Design

Joshua Segall

15

Concept Generation: Overall Design

Joshua Segall

Concept Selection: Overall Design

- AHP shows the results of our re-calculated concept selection.
- Final selection found that the Mixed Reality
 Wearable was in fact the best selection.

Table 2: Analytical Hierarchy Process

SELECTION:	Mixed Reality Wearable	Adafruit w/ 3D Camera	Semi-Automatis Robot w/ 3D Camera
Design Volume	0.64	0.36	0.10
Weight	0.45	0.10	0.45
Distance from Scanner	0.45	0.23	0.22
Tolerance of Depth Measurement	0.57	0.15	0.29
Brightness Level/Intesity Level	0.60	0.20	0.20
Operationg Temperature:	0.70	0.10	0.10
Resolution	0.60	0.20	0.20
Operating Time	0.43	0.36	0.30
SUM	4.44	1.70	1.86

Table 3: Final Selection

FINAL CONCEPT WEIGHTED				
Mixed Reality Wearable	0.56			
Adafruit w/ 3D Camera	0.21			
Semi-Autonomous Robot w/ 3D Camera	0.23			

Joshua Segall

Concept Generation: Wearable

Caleb Pitts

Concept Selection: Wearable Design

Table 4: Wearable Concept Selection

		Scale (1,3,6)											
Needs:	Weight:	ldea 1	11	ldea 2	12	ldea 3	13	ldea 4	14	ldea 5	15	ldea 6	16
Multiple Tags	6	6	36	6	36	3	18	6	36	3	18	6	36
Easy Removal	12	6	72	1	12	3	36	6	72	1	12	6	72
Consistant Placement	10	6	60	3	30	3	30	6	60	6	60	3	30
Aesthetics	2	3	6	3	6	9	18	1	2	3	6	6	12
Versatile Placement	4	6	24	1	4	3	12	6	24	3	12	3	12
Easy to put on/tighten	8	6	48	3	24	3	24	6	48	6	48	3	24
	Totals	24	46	11	2	13	8	24	2	15	6	1	86
	Rank	1		6		5		2	2	4	-		3

Figure 7: 3D Printed Hand with Wearable Attached

Winner:
Elastic Band with AprilTags Clipping on, with Dove Tail release

Figure 8: 3D Printed Wearable

Caleb Pitts

Design Production

Josiah Bazyler

Self-Instructed Software Initialization

Josiah Bazyler

Software Implementation: ROS

of the "apriltags2_ros" Node

Josiah Bazyler

lin@Lin-ros:~/catkin_ws\$ roslaunch ti_mmwave_rospkg rviz_1443_3d.launch ... logging to /home/lin/.ros/log/781d2e38-1979-11e8-bd3a-000c290d8e3b/roslaunch-Lin-ros-22241.log Checking log directory for disk usage. This may take awhile. Press Ctrl-C to interrupt Done checking log file disk usage. Usage is <1GB.</pre>

started roslaunch server http://Lin-ros:40141/

SUMMARY

PARAMETERS

- * /mmWave_Manager/command_port: /dev/ttyACM0
- * /mmWave_Manager/command_rate: 115200
- * /mmWave_Manager/data_port: /dev/ttyACM1
- * /mmWave_Manager/data_rate: 921600
- * /mmWave_Manager/max_allowed_azimuth_angle_deg: 90
- * /mmWave_Manager/max_allowed_elevation_angle_deg: 90
- * /rosdistro: kinetic
- * /rosversion: 1.12.12

NODES

/ mmWaveQuickConfig (ti_mmwave_rospkg/mmWaveQuickConfig)
mmWave_Manager (ti_mmwave_rospkg/ti_mmwave_rospkg)
rviz (rviz/rviz)
static_tf_map_to_base_radar_link (tf/static_transform_publisher)

auto-starting new master process[master]: started with pid [22251] ROS_MASTER_URI=http://localhost:11311

setting /run_id to 781d2e38-1979-11e8-bd3a-000c290d8e3b

process[rosout-1]: started with pid [22264]

started_core service [/rosout]

process[mmWave_Manager-2]: started with pid [22274]

process[mmWaveQuickConfig-3]: started with pid [22278]

process[static_tf_map_to_base_radar_link-4]: started with pid [22282]

[INFO] [1519487013.905256673]: mmWaveQuickConfig: Configuring mmWave device using config file: /home/lin/catkin_ws/src/ti_mmwave_rospkg/cfg/1443_3d.cfg

[ERROR] [1519487013.914902097]: Skipped loading plugin with error: XML Document '/home/lin/catkin_ws/src/ti_mmwave_rospkg/mmWave_nodelets.xml' has no Root Element. This likely mean

process[rviz-5]: started with pid [22284]

[INFO] [1519487013.947285294]: Initializing nodelet with 2 worker threads.

INFO] [1519487013.952507632]: waitForService: Service [/mmWaveCommSrv/mmWaveCLI] has not been advertised, waiting...

[ERROR] [1519487014.026504587]: Skipped loading plugin with error: XML Document '/home/lin/catkin_ws/src/ti_mmwave_rospkg/mmWave_nodelets.xml' has no Root Element. This likely means the XML is malformed or missing...

[ERROR] [1519487014.026949662]: Failed to load nodelet [mmWaveCommSrv] of type [ti_mmwave_rospkg/mmWaveCommSrv] even after refreshing the cache: According to the loaded plugin descr lptions the class ti_mmwave_rospkg/mmWaveCommSrv with base class type nodelet::Nodelet does not exist. Declared types are depth_image_proc/convert_metric depth_image_proc/crop_fore nost depth_image_proc/disparity depth_image_proc/point_cloud_xyz depth_image_proc/point_cloud_xyz_radial depth_image_proc/point_cloud_xyzi depth_image_proc/point_cloud_xyzi_radial depth_image_proc/point_cloud_xyzi depth_image_proc/point_cloud_xyzi_radial depth_image_proc/point_cloud_xyzi_radial depth_image_proc/crop_non_zero image_proc/debayer image_proc/rectify image_proc/crop_nonzero image_proc/crop_non_zero image_proc/debayer image_proc/rectify image_proc/crop_nonzero image_proc/convert totions the class ti_mmwave_rospkg/mmWaveCommSrv with base class type nodelet::Nodelet does not exist. Declared types are depth_image_proc/debayer image_proc/rectify image_proc/crop_nonzero image_proc/crop_non_zero image_proc/debayer image_proc/rectify image_pro

most depth_image_proc/disparity depth_image_proc/point_cloud_xyz depth_image_proc/point_cloud_xyz_radial depth_image_proc/point_cloud_xyzi depth_im

Josiah Bazyler

27

ENDLESS.

ERROR.

MESSAGES.

Software Results

Figure 10: Video of the AprilTag Being Tracked with the Old Code

Josiah Bazyler

Software Results

Figure 11: Video of the AprilTag's "Triaxis" Attempting to Mesh with the Universal Robotic Description Format (URDF) Model of a "Triaxis" in the Ideal Pose with the New Code

Josiah Bazyler

Department of Mechanical Engineering

Wearable Iterations

Figure 12: Apple Watch Concept

Figure 13: Magnetic Bracelet Concept

Figure 14: Temporary Tattoo Concept

Caleb Pitts

Final Wearable Iteration

- For the final design we went back to the Velcro band for both tightening and attaching the AprilTag.
- Using Velcro to attach the AprilTag to the band allows for placement to be adjusted easily.
- Uses magnetic clasp for easy removal without shifting hand position.

Figure 15: Final Design for the Band and Attachment of the AprilTag(s)

Caleb Pitts

Matthew Bigerton

Department of Mechanical Engineering

Design Testing and Validation

1. Scan Pose Time Validation

2. Consistency and Precision Testing

Matthew Bigerton

33

Testing Method

- The scan pose time validation and consistency and precision tests were conducted simultaneously using the following procedure:
 - 1. Direct participants to the table with the written instructions to read and the wearable on it.
 - 2. Instruct the participant to put on the wearable.
 - 3. On the participant's mark, the stop watch starts.
 - 4. Once the participant has meshed their pose as best as possible, detach the wearable and let fall to ground.
 - 5. Stop the stopwatch and record the final time and position/orientation data from Rviz.
- > 27 trials were completed (n=27).

Figure 16: Design Testing

Matthew Bigerton

Scan Pose Time Validation

Sponsor Targets: Locate and position/orient in under 3 minutes (180 seconds).

Consistency and Precision Testing

Sponsor Targets:

- The participant position needs to be within an error of 3±1 centimeters (0.098±0.01 feet).
- The participant orientation needs to be within an error of 0.05±0.01 rad (Euler angle).

Planned test:

- This test determined the accuracy of our design's ability to guide a participant to the ideal pose.
- Position and orientation data are recorded and analyzed.

Position Testing Results

Table 6: Position Difference Results—Summary

Difference in Ideal and Actual Position					
	x_diff (ft.)	y_diff (ft.)	z_diff (ft.)		
MIN	0.001	0.001	0.014		
MAX	0.076	0.323	0.276		
<mark>MEDIAN</mark>	<mark>0.010</mark>	<mark>0.020</mark>	<mark>0.044</mark>		
QUARTILE 1	0.004	0.009	0.026		
QUARTILE 3	0.022	0.041	0.092		
MEAN	0.016	0.042	0.078		
STDEV	0.017	0.069	0.078		

- The distribution of each axis is skewed up (toward the higher values).
- Each distribution has at least 2 outliers.
 - Outliers present make the median is more suitable to represent the data than the mean.
 - All the medians are within the error limit of 0.098±0.01 feet.

Position Accuracy Distribution

📕 x_diff 📕 y_diff 📕 Difference in Actual and Ideal Position (ft.)

Orientation Testing Results—Roll

Table 7: Roll-Angle Difference Results—Summary

Difference in Ideal and Actual Orientation				
	roll_diff	pitch_diff	yaw_diff	
MIN	<mark>0.001</mark>	0.001	0.001	
MAX	<mark>0.048</mark>	0.056	0.309	
 MEDIAN	<mark>0.004</mark>	0.006	0.031	-
QUARTILE 1	<mark>0.002</mark>	0.003	0.020	
QUARTILE 3	<mark>0.009</mark>	0.013	0.069	
MEAN	<mark>0.008546</mark>	0.010482	0.049897	
STDEV	<mark>0.010756</mark>	0.012035	0.058807	

- The roll angle distribution is skewed up (toward the higher values).
- The roll distribution has 3 outliers.
 - Outliers present make the median more suitable to represent the data than the mean.
- The median is within the error limit of 0.05±0.01 rad (Euler Angle).

Orientation Testing Results—Pitch

Table 8: Pitch-Angle Difference Results—Summary

Differenc	Difference in Ideal and Actual Orientation				
	roll_diff	<mark>pitch_diff</mark>	yaw_diff		
MIN	0.001	<mark>0.001</mark>	0.001		
MAX	0.048	<mark>0.056</mark>	0.309		
MEDIAN	0.004	<mark>0.006</mark>	0.031		
QUARTILE 1	0.002	<mark>0.003</mark>	0.020		
Quartile 3	0.009	<mark>0.013</mark>	0.069		
MEAN	0.008546	<mark>0.010482</mark>	0.049897		
STDEV	0.010756	<mark>0.012035</mark>	0.058807		

- The pitch angle distribution is skewed up (toward the higher values).
- The pitch distribution has 1 outlier.
 - Outliers present make the median more suitable to represent the data than the mean.
- The median is within the error limit of 0.05±0.01 rad (Euler Angle).

Pitch Angle Orientation Accuracy

Figure 20: Orientation Test Results—Pitch

Matthew Bigerton

Orientation Testing Results—Yaw

Table 9: Yaw-Angle Difference Results—Summary

	Difference in Ideal and Actual Orientation					
		roll_diff	pitch_diff	<mark>yaw_diff</mark>		
	MIN	0.001	0.001	<mark>0.001</mark>		
	MAX	0.048	0.056	<mark>0.309</mark>		
\rightarrow	MEDIAN	0.004	0.006	<mark>0.031</mark>		
	QUARTILE 1	0.002	0.003	<mark>0.020</mark>		
	QUARTILE 3	0.009	0.013	<mark>0.069</mark>		
	MEAN	0.008546	0.010482	<mark>0.049897</mark>		
	STDEV	0.010756	0.012035	<mark>0.058807</mark>		

- The yaw angle distribution is skewed up (toward the higher values).
- The yaw distribution has 1 outlier.
 - Outliers present make the median more suitable to represent the data than the mean.
- The median is within the error limit of 0.05±0.01 rad (Euler Angle).

Figure 21: Orientation Test Results—Yaw

Testing Remarks

- > An approximately symmetric/normal distribution is ideal.
 - Normal distributions are easily represented as a bell-curve.
- An approximately normal distribution can be achieved in 2 possible ways:
 - 1. Increasing n (number of trials).
 - 2. Eliminating Outliers
- Increasing the number of completed trials by a factor of 2 or 3 will greatly help the symmetry.
 - ➤ A goal would be n=100.
- Eliminating outliers can drastically change the shape of a distribution (reverse apparent skew).

Figure 22: Bell Curve Distribution

Conclusion

Figure 23: Sample of a Visualization

The objective of this project was to provide a user interface for a participant in a 3D body scan environment in order to shorten the duration of the overall process by reducing the amount of instructions given by the scan technician to position/orient the participant.

Most Important Points

- 1. AprilTags can now be tracked using ROS and the 3D camera.
- 2. The wearable created satisfies the design criteria.
- 3. The design components are all complete and ready for application.
- 4. The meshing of the CAD image and the AprilTag(s) in the virtual reality world has proven difficult, but is possible.

Lessons Learned

- Keeping the sponsor/customer's needs and wants as the most important determining factors is challenging throughout the design process.
- 2. Scoping a project with minimal prior knowledge is incredibly difficult.
- 3. Maintaining a Project timeline and schedule plays a pivotal role in project success.
- 4. Determining useful testing and validation of a virtual design can be troublesome.

References

- Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., & Marín-Jiménez, M. (2014). <u>"Automatic generation and detection of highly reliable fiducial markers under occlusion,"</u> *Pattern Recognition,47*(6), 2280-2292. doi:10.1016/j.patcog.2014.01.005
- 2. Malyuta, D. (2017). "<u>Navigation, Control and Mission Logic for Quadrotor Full-cycle</u> <u>Autonomy</u>," Master thesis, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.
- 3. Romero-Ramirez, F. J., Muñoz-Salinas, R., & Medina-Carnicer, R. (2018). <u>"Speeded up</u> <u>detection of squared fiducial markers,"</u> *Image and Vision Computing*, 76, 38-47. doi:10.1016/j.imavis.2018.05.004
- 4. Wang, J. & Olson, E. (2016). "<u>AprilTag 2: Efficient and robust fiducial detection</u>," in *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).*

Questions?

Department of Mechanical Engineering