

Temperature-Sensitive Medication Storage for Natural Disasters

10-OCT-19

Presented by: Tyler White

Meet the Team

Jesse Arrington Design Engineer

Christian Torpey Technical Engineer

Matthew Israel **Thermal Process** Engineer

Tyler White **Energy Systems** Engineer

Timothy Willms Production Engineer

Sponsor

Tom Derzypolski President: BowStern Marketing

- Florida State University graduate
- Bachelor's in Communications with an emphasis on Public Relations
- Decorated veteran of the U.S. Navy
- > Member of:
 - Florida Public Relations Association
 - > American Advertising Federation
 - Veterans of Foreign Wars

Design Review 1

4

This presentation will briefly discuss the following:

- Background Information
- Project Brief
- Project Scope
- Customer Needs
- Functional Decomposition

Project Background OBJECTIVE, MOTIVATION & BACKGROUND INFORMATION

Presented by: Tyler White

Objective

The objective of this project is to provide a relatively cheap and accessible means to keep temperature sensitive medications cool during natural disasters and the days following.

Department of Mechanical Engineering

Presented by: Matthew Israel

<u>Team & Sponsor</u>

T

FAMU-FSU Engineering

<u>Background</u>

Project Brief

<u>Project Scope</u>

Customer Needs

Functional Decomposition

Mortality After Landfall

Causes of death	Sept./ Oct. 2015	Sept./ Oct. 2016	Sept./ Oct. 2017	Pct. change
Essential hypertension and hypertensive renal disease	88	84	134	+56
Sepsis	138	117	197	+55
Suicide	31	35	49	+48
Alzheimer's and Parkinson's Diseases	370	343	524	+47
Diabetes	441	473	666	+46
Chronic Lower Respiratory Diseases	143	175	225	+42
Team & Sponsor <u>Background</u> Project	Brief Proje	<u>ct Scope</u>	Customer Needs F	unctional Decomposit
FAMU-FSU Engineering	Presented by: Matthew Israe	1	Department of N	Aechanical Enginee

Mortality After Landfall

Causes of death	Sept./ Oct. 2015	Sept./ Oct. 2016	Sept./ Oct. 2017	Pct. change
Essential hypertension and hypertensive renal disease	88	84	134	+56
Sepsis	138	117	197	+55
Suicide	31	35	49	+48
Alzheimer's and Parkinson's Diseases	370	343	524	+47
Diabetes	441	473	666	+46
Chronic Lower Respiratory Diseases	143	175	225	+42
Team & Sponsor Background Project Br	<u>ief</u> <u>Proje</u>	<u>ct Scope</u>	Customer Needs Fi	unctional Decomposi
FAMU-FSU Engineering	esented by: Matthew Israe	1	Department of N	lechanical Engine

Motivation

- Puerto Ricans \succ were out of power for an average of 84 days
- 46% spike in diabetes related deaths
- Inability to keep insulin \succ medication chilled is blamed for loss of life

Functional Decomposition

Team & Sponsor

FAMU-FSU Engineering

Background

Project Brief

Project Scope

Department of Mechanical Engineering

Presented by: Matthew Israel

Background Information

- Medications such as insulin and penicillin are temperature sensitive and must be kept within a certain temperature range to remain viable
- When medications deviate from designated temperature storage ranges, they become unusable and, in some cases, may be dangerous to patients

Background Information

Medication	Unopened Storage Temperature Range (°C)
Insulin	3-15
Penicillin	3-15
Byetta	3-15
Victoza	3-15
Pulmozyme Nebuliser	2-8

Project Brief

- Develop a way to keep temperature-sensitive medication cool during power outages"
- "A storage method that could be used during disasters and in the days/weeks/months afterwards would be very helpful"

Project Scope Key Goals, Markets, Assumptions, and stakeholders

Presented by: Matthew Israel

Key Goals

- Conserve Energy
- > Optimize Heat Transfer
- Reduce Resource Consumption
- Environmentally Sustainable
- Cost Efficiency

- > Reliability
- > Portability
- > Durability
- Ease of Operation

Primary Market> Users of temperature-sensitive medicine

Secondary Markets

- Federal Emergency Management Agency FEMA
- Red Cross
- People of Impoverished Countries
- > Military
- Camping Industry
- High Performance Cooler Industry

Markets

Assumptions

- Device will be easily accessible in terms of cost and supply
- Grid power is not available to power the device
- Design components can either be machined or purchased

Stakeholders

- Dr. Shayne McConomy
- Dr. Yousuf Ali
- Mr. Tom Derzypolski
- FAMU-FSU College of Engineering Dean's Office
 - Ms. Tisha Keller Director of Marketing

Presented by: Tyler White

22

Questions:

- Can you describe the intended user of this device?
- What do you like about existing products?
- > What do you dislike about existing products?
- > Should the device be specialized for a certain medication type?
- > What would you see as the device's main functions and features?
- > What type of disasters would you envision this device operating in?
- What time duration do you envision the device operating within?

Responses	Interpreted Need		
Chilled medication users in disaster-prone areas.	The device is intended to store and maintain chilled medication.		
Existing products keep ice cold, but don't hold the temperature well without ice.	The device sustains a desired temperature without the use of ice.		
Most products require a charger, and don't last long enough in the case of a power outage.	The device generates and uses minimal power to keep the medication refrigerated.		
The medication types that result in the highest death toll.	The device maintains a temperature range suitable for refrigerated medicines.		
The device should last up to three months without access to the grid.	The device controls the temperature of the system for three months without being plugged into external power.		
<u>Team & Sponsor</u> <u>Backgrouna</u> <u>Project Briet</u>	Project scope Customer Needs Functional Decomposition		
FAMU-FSU Engineering Presented by:	Matthew Israel Department of Mechanical Engineering		

Responses	Interpreted Need
Chilled medication users in disaster-prone areas.	The device is intended to store and maintain chilled medication.
Existing products keep ice cold, but don't hold the temperature well without ice.	The device sustains a desired temperature without the use of ice.
Most products require a charger, and don't last long enough in the case of a power outage.	The device generates and uses minimal power to keep the medication refrigerated.
The medication types that result in the highest death toll.	The device maintains a temperature range suitable for refrigerated medicines.
The device should last up to three months without access to the grid.	The device controls the temperature of the system for three months without being plugged into external power.
<u>Ieam & Sponsor</u> <u>Background</u> <u>Project Briet</u>	Project Scope <u>Customer Needs</u> Functional Decomposition
FAMU-FSU Engineering Presented by:	Matthew Israel Department of Mechanical Engineering

Responses	Interpreted Need
Chilled medication users in disaster-prone areas.	The device is intended to store and maintain chilled medication.
Existing products keep ice cold, but don't hold the temperature well without ice.	The device sustains a desired temperature without the use of ice.
Most products require a charger, and don't last long enough in the case of a power outage.	The device generates and uses minimal power to keep the medication refrigerated.
The medication types that result in the highest death toll.	The device maintains a temperature range suitable for refrigerated medicines.
The device should last up to three months without access to the grid.	The device controls the temperature of the system for three months without being plugged into external power.
<u>Ieam & Sponsor</u> <u>Backgrouna</u> <u>Project Briet</u>	Project scope <u>Customer Needs</u> Functional Decomposition
FAMU-FSU Engineering Presented by:	Matthew Israel Department of Mechanical Engineering

Responses	Interpreted Need
Chilled medication users in disaster-prone areas.	The device is intended to store and maintain chilled medication.
Existing products keep ice cold, but don't hold the temperature well without ice.	The device sustains a desired temperature without the use of ice.
Most products require a charger, and don't last long enough in the case of a power outage.	The device generates and uses minimal power to keep the medication refrigerated.
The medication types that result in the highest death toll.	The device maintains a temperature range suitable for refrigerated medicines.
The device should last up to three months without access to the grid.	The device controls the temperature of the system for three months without being plugged into external power.
<u>ream & sponsor</u> <u>Backgrouna</u> <u>Project Brief</u>	<u>Project scope</u> <u>Customer Needs</u> <u>Functional Decomposition</u>
FAMU-FSU Engineering Presented by: 1	Matthew Israel Department of Mechanical Engineering

Responses	Interpreted Need
Chilled medication users in disaster-prone areas.	The device is intended to store and maintain chilled medication.
Existing products keep ice cold, but don't hold the temperature well without ice.	The device sustains a desired temperature without the use of ice.
Most products require a charger, and don't last long enough in the case of a power outage.	The device generates and uses minimal power to keep the medication refrigerated.
The medication types that result in the highest death toll.	The device maintains a temperature range suitable for refrigerated medicines.
The device should last up to three months without access to the grid.	The device controls the temperature of the system for three months without being plugged into external power.
<u>Ieam & Sponsor</u> <u>Background</u> <u>Project Briet</u>	Project Scope <u>Customer Needs</u> Functional Decomposition
FAMU-FSU Engineering Presented by:	Matthew Israel Department of Mechanical Engineering

ıg

Responses	Interpreted Need		
Chilled medication users in disaster-prone areas.	The device is intended to store and maintain chilled medication.		
Existing products keep ice cold, but don't hold the temperature well without ice.	The device sustains a desired temperature without the use of ice.		
Most products require a charger, and don't last long enough in the case of a power outage.	The device generates and uses minimal power to keep the medication refrigerated.		
The medication types that result in the highest death toll.	The device maintains a temperature range suitable for refrigerated medicines.		
The device should last up to three months without access to the grid.	The device controls the temperature of the system for three months without being plugged into external power.		
Team & Sponsor Background Project Brief	Project Scope Customer Needs Functional Decomposition		
Presented by:	Matthew Israel Department of Mechanical Engineerin		

Functional Decomposition

Presented by: Matthew Israel

Functional Decomposition

Team & Sponsor

(7)

FAMU-FSU Engineering

30

Presented by: Tyler White

Functional Decomposition

- > Three main functions:
 - Interact with User
 - Regulate Power
 - Regulate Temperature
- > Overall outcomes:
 - Maintain temperature
 - > Store medicine
 - Protect medicine

31

Next Steps

References

- BowStern Marketing Communications. (n.d.). BowStern : Desire to Communicate. Retrieved October 7, 2019, from http://www.bowstern.com/.
- Derzypolski, T. (2018, June 16). An option for the Children's Services Council that could satisfy many: Opinion. Retrieved October 6, 2019, from https://www.tallahassee.com/story/opinion/2018/06/16/option-childrens-services-council-could-satisfy-many/705225002/.
- Federal Emergency Management Agency FEMA Seal Plaque (Round). (n.d.). Retrieved October 6, 2019, from https://americanplaquecompany.com/product/federal-emergency-management-agency-fema-seal-plaque-round/.
- Fink, S. (2018, June 3). Puerto Rico: How Do We Know 3,000 People Died as a Result of Hurricane Maria? Retrieved October 6, 2019, from https://www.nytimes.com/2018/06/02/us/puerto-rico-death-tolls.html.
- > Medication Storage at Home. (n.d.). Retrieved October 6, 2019, from <u>https://medangel.co/medication-storage-at-home/</u>.
- Moye, D., & McGonigal, C. (2018, March 9). These Stunning GIFs Show St. Martin's Miraculous Recovery From Hurricanes Irma And Maria. Retrieved October 6, 2019, from <u>https://www.huffpost.com/entry/watch-st-martins-hurricane-recovery-in-these-stunning-before-and-afterimages n_5a9ecb1be4b002df2c5e3165</u>.
- Polley, N. (n.d.). Red Cross Helps Missouri Flood Victims. Retrieved October 6, 2019, from https://www.ktts.com/2019/03/31/red-cross-helps-missouri-flood-victims/.
- > Pulmozyme (dornase alfa) Uses, Dosage, Side Effects. (n.d.). Retrieved October 6, 2019, from <u>https://www.drugs.com/pulmozyme.html</u>.
- Reports: Hurricane Maria makes landfall in Puerto Rico with 155 mph winds. (n.d.). Retrieved October 6, 2019, from <u>https://www.accuweather.com/en/weather-news/reports-hurricane-maria-nears-virgin-islands-puerto-rico-as-winds-reach-175-mph/70002762.</u>
- > Taking BYETTA. (n.d.). Retrieved October 6, 2019, from <u>https://www.byetta.com/taking-byetta.html</u>.
- > U.S. Department of Defense (DOD). (n.d.). Retrieved October 6, 2019, from <u>http://www.milbadges.com/corps/USA/dod</u>.
- Victoza (Liraglutide [rDNA] Injection): Side Effects, Interactions, Warning, Dosage & Uses. (n.d.). Retrieved October 6, 2019, from <u>https://www.rxlist.com/victoza-drug.htm</u>.

Team & Sponsor	Background	Project Brief	Project Scope	<u>Customer Needs</u>	Functional Decomposition
🕑 🔮 FAMU-FSU	J Engineering	Presented b	by: Matthew Israel	Department	of Mechanical Engineering

Questions?

Contact Us!

Tyler White (Energy Systems Engineer)- <u>tpw16@my.fsu.edu</u>

- Christian Torpey (Technical Engineer) <u>cbt13b@my.fsu.edu</u>
- Jesse Arrington (Design Engineer) jca15@my.fsu.edu
- Matthew Israel (Thermal Process Engineer) <u>mi16e@my.fsu.edu</u>
- Timothy Willms (Production Engineer) <u>tjm15m@my.fsu.edu</u>

